时间复杂度的解析

1.时间复杂度的定义

一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度(O是数量级的符号 ),简称时间复杂度。

定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数 ,则T(n)称为这一算法的“时间复杂性”。当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性”。我们常用大O表示法表示时间复杂性,注意它是某一个算法的时间复杂性。大O表示只是说有上界,由定义如果f(n)=O(n),那显然成立f(n)=O(n^2),它给你一个上界,但并不是最大上界,但人们在表示的时候一般都习惯表示前者。此外,一个问题本身也有它的复杂性,如果某个算法的复杂性到达了这个问题复杂性的下界,那就称这样的算法是最佳算法。“大O记法”:在这种描述中使用的基本参数是 n,即问题实例的规模,把复杂性或运行时间表达为n的函数。这里的“O”表示量级 (order),比如说“二分检索是 O(logn)的”,也就是说它需要“通过logn量级的步骤去检索一个规模为n的数组”记法 O ( f(n) )表示当 n增大时,运行时间至多将以正比于 f(n)的速度增长。这种渐进估计对算法的理论分析和大致比较是非常有价值的,但在实践中细节也可能造成差异。例如,一个低附加代价的O(n2)算法在n较小的情况下可能比一个高附加代价的 O(nlogn)算法运行得更快。当然,随着n足够大以后,具有较慢上升函数的算法必然工作得更快。

2.时间复杂度计算举例

1)正常计算的计算步骤

  int num1, num2;
  for(int i=0; i<n; i++) 
  {        
       num1 += 1;
       for(int j=1; j<=n; j*=2) 
       {        
        num2 += num1;
       }
  } 

分析:
1.语句int num1, num2;的频度为1;
语句i=0;的频度为1;
语句i<n; i++; num1+=1; j=1; 的频度为n;
语句j<=n; j*=2; num2+=num1;的频度为n*log2n;
T(n) = 2 + 4n + 3n*log2n2.
2.忽略掉T(n)中的常量、低次幂和最高次幂的系数f(n) = n*log2n
3.lim(T(n)/f(n))=(2+4n+3n*log2n)/(n*log2n)= 2*(1/n)*(1/log2n) + 4*(1/log2n) + 3
当n趋向于无穷大,1/n趋向于0,1/log2n趋向于0所以极限等于3。T(n) = O(n*log2n)

2)简化的计算步骤

再来分析一下,可以看出,决定算法复杂度的是执行次数最多的语句,这里是num2 += num1,一般也是最内循环的语句。并且,通常将求解极限是否为常量也省略掉?于是,以上步骤可以简化为:
1. 找到执行次数最多的语句
2. 计算语句执行次数的数量级
3. 用大O来表示结果 继续以上述算法为例,进行分析:

1.执行次数最多的语句为num2 += num1
2.T(n) = n*log2nf(n) = n*log2n

3.一些补充说明

1)最坏时间复杂度

算法的时间复杂度不仅与语句频度有关,还与问题规模及输入实例中各元素的取值有关。一般不特别说明,讨论的时间复杂度均是最坏情况下的时间复杂度。这就保证了算法的运行时间不会比任何更长。

2)求数量级

即求对数值(log),默认底数为10,简单来说就是“一个数用标准科学计数法表示后,10的指数”。例如,5000=5x10 3 (log5000=3) ,数量级为3。另外,一个未知数的数量级为其最接近的数量级,即最大可能的数量级。

3)求极限的技巧

要利用好1/n。当n趋于无穷大时,1/n趋向于0

一些规则(引自:时间复杂度计算 )

1) 加法规则 T(n,m) = T1(n) + T2(n) = O (max ( f(n), g(m) )
2) 乘法规则 T(n,m) = T1(n) * T2(m) = O (f(n) * g(m))
3) 一个特例(问题规模为常量的时间复杂度) 在大O表示法里面有一个特例,如果T1(n) = O(c), c是一个与n无关的任意常数,T2(n) = O ( f(n) ) 则有T(n) = T1(n) * T2(n) = O ( c*f(n) ) = O( f(n) )也就是说,在大O表示法中,任何非0正常数都属于同一数量级,记为O(1)。
4) 一个经验规则
复杂度与时间效率的关系:

c < log2n < n < n*log2n < n^2 < n^3 < 2^n < 3^n < n! (c是一个常量)
|-----------------|-------------|------------------------|   
较好                      一般               较差

如果一个算法的复杂度为c 、 log2n 、n 、 n*log2n,那么这个算法时间效率比较高 ,如果是 2n , 3n ,n!,那么稍微大一些的n就会令这个算法不能动了,居于中间的几个则差强人意。

4.理解补充

1).

一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。
   一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。

2).

一般情况下,算法的基本操作重复执行的次数是模块n的某一个函数f(n),因此,算法的时间复杂度记做:T(n)=O(f(n))。随着模块n的增大,算法执行的时间的增长率和f(n)的增长率成正比,所以f(n)越小,算法的时间复杂度越低,算法的效率越高。
   在计算时间复杂度的时候,先找出算法的基本操作,然后根据相应的各语句确定它的执行次数,再找出T(n)的同数量级(它的同数量级有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出后,f(n)=该数量级,若T(n)/f(n)求极限可得到一常数c,则时间复杂度T(n)=O(f(n))。

3).常见的时间复杂度

按数量级递增排列,常见的时间复杂度有:

   按数量级递增排列,常见的时间复杂度有:
   常数阶O(1), 对数阶O(log2n), 线性阶O(n), 线性对数阶O(nlog2n), 平方阶
   O(n^2), 立方阶O(n^3),…, k次方阶O(n^k), 指数阶O(2^n) 。
   其中,
   1. O(n),O(n^2), 立方阶O(n^3),…, k次方阶O(n^k) 为多项式阶时间复杂度,
     分别称为一阶时间复杂度,二阶时间复杂度。。。。
   2.O(2^n),指数阶时间复杂度,该种不实用
   3.对数阶O(log2n), 线性对数阶O(nlog2n),除了常数阶以外,该种效率最高   

   例:算法:
     for(i=1;i<=n;++i)
     {
        for(j=1;j<=n;++j)
        {
            c[ i ][ j ]=0; //该步骤属于基本操作 执行次数:n^2
             for(k=1;k<=n;++k)
                 c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ];     
                 //该步骤属于基本操作执行次数:n^3
      }
     }
       则有 T(n)= n^2+n^3,根据上面括号里的同数量级,我们可以确定 n^3T(n)
    的同数量级
       则有f(n)= n^3,然后根据T(n)/f(n)求极限可得到常数c
       则该算法的 时间复杂度:T(n)=O(n^3)

5.时间复杂度各种情况分析

1).并列循环的复杂度分析

将各个嵌套循环的时间复杂度相加。例如:

for (i=1; i<=n; i++)      
    x++;  
for (i=1; i<=n; i++)   
   for (j=1; j<=n; j++)
             x++;

解:第一个for循环T(n) = nf(n) = n时间复杂度为Ο(n)
第二个for循环T(n) = n2f(n) = n2时间复杂度为Ο(n2)
整个算法的时间复杂度为Ο(n+n2) = Ο(n2)。

2).函数调用的复杂度分析

例如:

public void printsum(int count)
{    
    int sum = 1;
    for(int i= 0; i<n; i++)
    {       sum += i;    }       System.out.print(sum);}

分析:记住,只有可运行的语句才会增加时间复杂度,因此,上面方法里的内容除了循环之外,其余的可运行语句的复杂度都是O(1)。所以printsum的时间复杂度 = for的O(n)+O(1) = 忽略常量 = O(n)

这里其实可以运用公式 num = n*(n+1)/2,对算法进行优化,改为:
public void printsum(int count)
{
int sum = 1;
sum = count * (count+1)/2;
System.out.print(sum);
}
这样算法的时间复杂度将由原来的O(n)降为O(1),大大地提高了算法的性能。

3.混合情况(多个方法调用与循环)的复杂度分析

例如:

public void suixiangMethod(int n)
{    
    printsum(n);//1.1    
    for(int i= 0; i<n; i++)
    {     
          printsum(n); //1.2    
    }    
    for(int i= 0; i<n; i++)
    {       
    for(int k=0; k<n; ++k)
              System.out.print(i,k); //1.3   
    }  
}

suixiangMethod 方法的时间复杂度需要计算方法体的各个成员的复杂度。也就是1.1+1.2+1.3 = O(1)+O(n)+O(n2) —-> 忽略常数 和 非主要项 == O(n2)

6.更多的例子

1)o(1)

交换ij的内容    
temp=i;    i=j;    j=temp; 
以上三条单个语句的频度为1,该程序段的执行时间是一个与问题规模n无关   
的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。

2).O(n^2)

sum=0/* 执行次数1 */
for(i=1;i<=n;i++)         
for(j=1;j<=n;j++)    
sum++;       /* 执行次数n2 */
解:T(n) = 1 + n2 = O(n2)   
for (i=1;i<n;i++)   
{
        y=y+1;        ①  
        for (j=0;j<=(2*n);j++)        
              x++;        ②         
}         
解:语句1的频度是n-1  
语句2的频度是(n-1)*(2n+1) = 2n2-n-1   
T(n) = 2n2-n-1+(n-1) = 2n2-2   f(n) = n2   
lim(T(n)/f(n)) = 2 + 2*(1/n2) = 2 
T(n) = O(n2).

3)O(n3)

{  
    for(j=0;j<i;j++)
    {      
        for(k=0;k<j;k++)
            x=x+2;  
    }          
}           
解:当i=m, j=k的时候,内层循环的次数为k当i=m时, j 可以取0,1,...,m-1,所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i从0取到n, 则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/2次
      T(n) = n(n+1)(n-1)/2 = (n^3-n)/2  
      f(n) = n^3
所以时间复杂度为O(n^3)。

7.时间复杂度常用结论

  访问数组中的元素是常数时间操作,或说O(1)操作。一个算法如 果能在每个步骤去掉一半数据元素,如二分检索,通常它就取 O(log n)时间。用strcmp比较两个具有n个字符的串需要O(n)时间。常规的矩阵乘算法是O(n^3),因为算出每个元素都需要将n对 元素相乘并加到一起,所有元素的个数是n^2。 指数时间算法通常来源于需要求出所有可能结果。例如,n个元 素的集合共有2n个子集,所以要求出所有子集的算法将是O(2^n)的。指数算法一般说来是太复杂了,除非n的值非常小,因为,在 这个问题中增加一个元素就导致运行时间加倍。不幸的是,确实有许多问题 (如著名的“巡回售货员问题” ),到目前为止找到的算法都是指数的。如果我们真的遇到这种情况,通常应该用寻找近似最佳结果的算法替代之。

8.常用排序算法的时间复杂度

请看下一篇分享

  • 6
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值