动态规划 —— 计算二次项系数

动态规划 —— 计算二次项系数

  • C(n,k) = C(n-1,k-1) + C(n-1,k)    当n>k>0
  • C(n,0) = C(n,n) = 1


方法一:用二维数组填充矩阵,时间复杂度O(nk),空间复杂度O(nk)

#include<iostream>
#include<cassert>
#include<algorithm>
using namespace  std;

long long binaryofCoeff(int n, int k)
{
	assert(n >= k&&k >= 0);
	long long **arr = new long long *[n + 1];
	for (int i = 0; i <= n; i++)
	{
		arr[i] = new long long[k + 1];
	}
	for (int i = 0; i <= n; i++)
	{
		for (int j = 0; j <= min(i, k); j++)        //  min函数头文件为#include<algorithm>
		{
			if (j == 0 || j == i)
				arr[i][j] = 1;
			else
				arr[i][j] = arr[i - 1][j - 1] + arr[i - 1][j];
		}
	}
	return arr[n][k];
	delete arr;
	arr = nullptr;
}

int main()
{

	int n, k;
	cin >> n >> k;
	cout << binaryofCoeff(n, k) << endl;
	return 0;
}

方法二:用一维数组填充(需从右往左填充,避免数据覆盖),时间复杂度O(nk),空间复杂度O(k)

#include<iostream>
#include<algorithm>
#include<cassert>

using namespace std;

long long binofCoeff(int n, int k)
{
	assert(n >= k&&k >= 0);
	long *arr = new long[k + 1];
	arr[0] = 1;
	for (int i=1; i <= n; i++)
	{
		for (int j = min(i, k); j >= 1; j--)
		{
			if (i == j || j == 0)
				arr[j] = 1;
			else
				arr[j] += arr[j - 1];
		}
	}
	return arr[k];
}

int main()
{
	int n, k;
	cin >> n >> k;
	cout << binofCoeff(n, k) << endl;
	return 0;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值