如何在六个月内掌握深度学习

翻译 2018年02月07日 20:20:08

原文:How to learn Deep Learning in 6 months

作者:Bargava

翻译:无阻我飞扬

摘要:这篇文章可以让大家半年内入门深度学习。本文作者Bargava分阶段给出了零基础入门深度学习可行性强的资料和学习方法。以下是译文。

如何在六个月内学习深度学习

在大约6个月的时间里,学习,理解深度学习并对其技术发展做出贡献是很有可能的。本文详细介绍了实现这一目标的步骤。

学习门槛

-愿意在接下来的6个月里每周花10到20个小时。

-有一定的编程技巧。懂一点Python和云的基础知识(假设没有Python和云的相关背景)。

-在过去受过相关的数学教育(代数,几何等)。

-有能访问互联网的计算机。

第一阶段

学习开车需要通过驾驶汽车来学习,而不是了解内燃机和离合器的工作原理,至少刚一开始不是这样的。学习深度学习亦是如此,需要遵循这种自上而下的学习方法。

首先推荐fast.ai 上的教程—?Practical Deep Learning for Coders?—?Part 1。这个教程大约需要学习4到6周的时间。教程包含一个云端运行代码的session。Google Colaboratory 有免费的GPU访问,从那里开始。当然也有一些其它的选择包括:Paperspace, 亚马逊AWS, 谷歌云平台(GCP), CrestleFloydhub等。所有这些都很好,还没到开始构建自己机器模型的时候。

第二阶段

现在是时候了解一些基础知识了。需要学习微积分和线性代数。

对于微积分, MIT的Big Picture of Calculus提供了很好的概述。

对于线性代数,MIT知名教授Gilbert Strang的OpenCourseWare是不二之选。

一旦完成了上述两门课程的学习,读一读Matrix Calculus for Deep Learning(来自旧金山大学科学家、fast.ai联合创始人Jeremy Howard)。

第三阶段

现在是了解深度学习自上而下学习方法的时候了。学一下Coursera上的深度学习的专项课程,里面包含5门课程。学习课程也需要完成相关作业。但是这一努力确实值得。理想情况下,根据已有的学习基础,完成一门课程需要花费一周时间。

第四阶段

“只学习不会玩,聪明的小孩也会变傻”(这是美国一句流行的俗语)

现在是时候了解深度学习库了(例如:tensorflow,pytorch,mxnet)并且可以为你喜欢的问题从头开始构建架构了。

前三个步骤是了解如何和在何处使用深度学习,并获得坚实的基础。这一步就是从零开始实现一个项目,并学习利用各种工具构建模型。

第五阶段

现在,可以去刚刚提到的fast.ai课程的第二部分看看了,也就是Cutting Edge Deep Learning for Coders这一课。这里面包含的问题更高级,你将学习阅读最新的研究论文并且学习去理解它们。

每个阶段大约需要4到6周的时间。从开始的那一刻起,大约26周以后,如果你虔诚地遵循上述所有准则,将会在深度学习方面打下坚实的基础。

接下来做什么?

接下来学习斯坦福的CS231n(Convolutional Neural Networks for Visual Recognition)和CS224d(Deep Learning for Natural Language Processing)两门课程了,这两门课程对视觉和NLP的讲解比较深度透彻。它们涵盖了最新的技术发展水平。还推荐读深度学习这本书,对巩固理解很有帮助。

快乐的深度学习,创造每一天。

【完全指南】6个月,每周10-20小时,零基础掌握深度学习

原文链接:点击打开链接摘要: 在大约6个月的时间里,学习、跟踪和参与到深度学习state-of-the-art的工作中是完全可能的。实现这一目标只需5个步骤,本文带来详细介绍。必备条件你愿意在接下来的...
  • qq_40954115
  • qq_40954115
  • 2018年02月09日 14:49
  • 37

深度学习进修之旅

原文链接;点击打开链接摘要: 转型深度学习只需要六个月,本文作者通过自身的经历,为想要转型深度学习的程序猿们提供了一套可行性很高的转型方案。在六个月的时间内大致掌握深度学习是完全可能的,本文就详细介绍...
  • qq_40954115
  • qq_40954115
  • 2018年02月11日 16:10
  • 22

如何在十天内掌握线性代数

斯考特·杨在12个月内自学完成了4年麻省理工学院计算机科学的33门课程,并通过了MIT的实际测试。平均算来,杨修完每门课程大概只需要一个半星期。诀窍在于,他有一套加速学习的策略,而且这套策略,并不只是...
  • pi9nc
  • pi9nc
  • 2014年01月21日 17:23
  • 2098

Java加密技术(八)

本篇的主要内容为Java证书体系的实现。     请大家在阅读本篇内容时先阅读 Java加密技术(四),预先了解RSA加密算法。     在构建Java代码实现前,我们需要完成证书的制作。 ...
  • qq_27376871
  • qq_27376871
  • 2016年06月12日 17:43
  • 268

对Oracle软软解析的一点看法

摘要: 本文将介绍Oracle解析器的一种较为特殊的解析行为,软软解析。 杂谈  在接触过oracle优化器的特征之后,我们都知道oracle优化器的一个迷人之处,就在于share...
  • qq_40954115
  • qq_40954115
  • 2017年11月13日 14:53
  • 74

我的架构之路 — 配置中心(三)— 动态更新配置

原文链接:点击打开链接 摘要: 包含两方面的含义:一、变化的配置能够下发到客户端.二、客户端能够方便地处理这些变化的配置。下面会讲普通监听器回调方式和spring 注解到field的方式。 ...
  • qq_40954115
  • qq_40954115
  • 2017年12月13日 14:54
  • 173

TED 如何在六个月内学会一门外语

The five principles are: 5个原则: 1. Focus on language content that is relevant to you. 专注和你日常相关的语...
  • SUNSHANGJIN
  • SUNSHANGJIN
  • 2014年11月10日 15:31
  • 668

深度学习在视觉感知中的运用(1)

1.由于cpu的运算能力增强,硬件逐渐变廉价,以及深度学习算法的大量编写及完善,我们,如今可以将深度学习在视觉感知与识别中使用 在学习深度学习之前,需要理解以下几个算法 (1)convol...
  • qq_30735079
  • qq_30735079
  • 2017年07月04日 14:55
  • 188

11月2日云栖精选夜读:BNN - 基于low-bits量化压缩的跨平台深度学习框架

摘要: 本文介绍阿里IDST部门研发、基于low-bits量化压缩的跨平台深度学习框架BNN。BNN可以在算法精度几乎无损的前提下,将模型大小压缩40-100倍,同时获得2-3倍的加速效果。 本...
  • qq_40954115
  • qq_40954115
  • 2017年11月06日 14:42
  • 76

算法学习之路|逆元取模(一)

原文链接:点击打开链接摘要: 模运算即求余运算。“模”是“Mod”的音译,模运算多应用于程序编写中好了,今天轻松一点。逆元取模,一个小概念,在做ACM一些题目的时候必须要用到。终于下决心好好看一看了 ...
  • qq_40954115
  • qq_40954115
  • 2018年02月11日 16:12
  • 25
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:如何在六个月内掌握深度学习
举报原因:
原因补充:

(最多只允许输入30个字)