Farey序列(Stern-Brocot tree的衍生)

Farey序列是一个包含特定性质的对称序列,如中间值为1/2,序列元素为不可约分的最简分数。通过Stern-Brocot树可以构造所有有理数,且序列中相邻分数的乘积差为1。N阶Farey序列可通过递归或非递归方法构造,递归构造的时间复杂度为O(N^2),非递归构造则可通过线性关系求解第k个最小分数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       早在一百多的年前,人们就发现了Farey序列,它是介于0和1之间满足一定的性质的一个有理数列。但一直到近代才被得到真正的应用,特别是在近代数论中,也逐渐受到人们的重视。这里对于这个序列的性质进行了初步探讨研究,并根据这个性质得到关于有理数和无理数一些有趣的命题。

网上找到的一段描述,学习一下。

Farey序列

Fn = {a/b | gcd(a,b)=1 && 0<=a,b<=n};

即由小于或等于n的整数所组成的不可再约分数的递增序列,并满足分子分母互质。

如:

F1 = {0/1, 1/1}

F2 = {0/1, 1/2, 1/1}

F3 = {0/1, 1/3, 1/2, 2/3, 1/1}

性质

除了F1,其余Farey序列都有奇数个元素,并且中间值是1/2。

Farey序列是一个对称序列,头尾之和为1。

假如序列中有三个连续元素x1/y1, x2/y2, x3/y3,则有x2 = x1+x3; y2 = y1+y3;

<

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值