协同过滤推荐之slope one算法

1.示例引入

比如说你在京东选购手机iphone和note7:

消费者用过后,会有相关的评分。

假设评分如下: 
评分 iphone note7 
小a 4 5 
小b 4 3 
小c 2 3 
小d 3 ? 
问题:请猜测一下小d可能会给“note7”打多少分? 
思路:把两个手机的平均差值求出来,iphone减去note7的平均偏差:[(4-5)+(4-3)+(2-3)]/3=-0.333。一个新客户比如小d,只吃了iphone评分为3分,那么可以猜测她对note7的评分为:3-(-0.333)=3.333

这就是slope one 算法的基本思路,非常非常的简单。

2.slope one 算法思想

Slope One 算法是由 Daniel Lemire 教授在 2005 年提出的一个Item-Based 的协同过滤推荐算法。和其它类似算法相比, 它的最大优点在于算法很简单, 易于实现, 执行效率高, 同时推荐的准确性相对较高。 


Slope One算法是基于不同物品之间的评分差的线性算法,预测用户对物品评分的个性化算法。主要两步: 


Step1:计算物品之间的评分差的均值,记为物品间的评分偏差(两物品同时被评分); 


这里写图片描述


Step2:根据物品间的评分偏差和用户的历史评分,预测用户对未评分的物品的评分。 


这里写图片描述 


Step3:将预测评分排序,取topN对应的物品推荐给用户。

举例: 
假设有100个人对物品A和物品B打分了,R(AB)表示这100个人对A和B打分的平均偏差;有1000个人对物品B和物品C打分了, R(CB)表示这1000个人对C和B打分的平均偏差; 


这里写图片描述


3.Python实现

3.1数据

def loadData():
    items={'A':{1:5,2:3},
           'B':{1:3,2:4,3:2},
           'C':{1:2,3:5}}
    users={1:{'A':5,'B':3,'C':2},
           2:{'A':3,'B':4},
           3:{'B':2,'C':5}}
    return items,users


3.2物品间评分偏差

#***计算物品之间的评分差
#items:从物品角度,考虑评分
#users:从用户角度,考虑评分
def buildAverageDiffs(items,users,averages):
    #遍历每条物品-用户评分数据
    for itemId in items:
        for otherItemId in items:
            average=0.0 #物品间的评分偏差均值
            userRatingPairCount=0 #两件物品均评过分的用户数
            if itemId!=otherItemId: #若无不同的物品项
                for userId in users: #遍历用户-物品评分数
                    userRatings=users[userId] #每条数据为用户对物品的评分
                    #当前物品项在用户的评分数据中,且用户也对其他物品由评分
                    if itemId in userRatings and otherItemId in userRatings:
                        #两件物品均评过分的用户数加1
                        userRatingPairCount+=1
                        #评分偏差为每项当前物品评分-其他物品评分求和
                        average+=(userRatings[otherItemId]-userRatings[itemId])
                averages[(itemId,otherItemId)]=average/userRatingPairCount

3.3预估评分

#***预测评分
#users:用户对物品的评分数据
#items:物品由哪些用户评分的数据
#averages:计算的评分偏差
#targetUserId:被推荐的用户
#targetItemId:被推荐的物品
def suggestedRating(users,items,averages,targetUserId,targetItemId):
    runningRatingCount=0 #预测评分的分母
    weightedRatingTotal=0.0 #分子
    for i in users[targetUserId]:
        #物品i和物品targetItemId共同评分的用户数
        ratingCount=userWhoRatedBoth(users,i,targetItemId)
        #分子
        weightedRatingTotal+=(users[targetUserId][i]-averages[(targetItemId,i)])\
        *ratingCount
        #分母
        runningRatingCount+=ratingCount
    #返回预测评分
    return weightedRatingTotal/runningRatingCount


统计两物品共同评分的用户数

# 物品itemId1与itemId2共同有多少用户评分
def userWhoRatedBoth(users,itemId1,itemId2):
    count=0
    #用户-物品评分数据
    for userId in users:
        #用户对物品itemId1与itemId2都评过分则计数加1
        if itemId1 in users[userId] and itemId2 in users[userId]:
            count+=1
    return count


3.4测试结果:

if __name__=='__main__':
    items,users=loadData()
    averages={}
    #计算物品之间的评分差
    buildAverageDiffs(items,users,averages)
    #预测评分:用户2对物品C的评分
    predictRating=suggestedRating(users,items,averages,2,'C')
    print 'Guess the user will rate the score :',predictRating


结果:用户2对物品C的预测分值为 
Guess the user will rate the score : 3.33333333333


4.slopeOne使用场景

该算法适用于物品更新不频繁,数量相对较稳定并且物品数目明显小于用户数的场景。依赖用户的用户行为日志和物品偏好的相关内容。 


优点: 
1.算法简单,易于实现,执行效率高; 
2.可以发现用户潜在的兴趣爱好; 


缺点: 
依赖用户行为,存在冷启动问题和稀疏性问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值