数码串珠

本文探讨了一串神秘的数码珠串,其中6颗珠子上刻有不同的整数,总和为31。研究显示,这6个整数可以形成一个连续覆盖区间[1,31]的所有整数的序列。通过设定数组a和b,使用回溯法求解了n个整数和为s的完全覆盖问题,展示了在圆环上分布的整数相比直线上的更高效率覆盖。" 138429030,22892621,SpringBoot整合JWT与Mybatis实现登录拦截,"['spring boot', '后端', 'mybatis']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在某寺遗址考古发掘中意外发现一串奇特的数码珠串,珠串上共串缀有6颗宝珠,每一宝珠上都刻有一个神秘的整数,长期以来,无人知晓这6颗数码串珠究竟有什么作用,专家通过考证,揭示这一数码串珠具有以下奇异特性:

(1)、这6颗宝珠上的整数互不相同,6个整数之和为31

(2)、沿珠串相连的若干颗(1~6颗)珠上整数之和为1,2,……,31不间断,这一象征祥瑞的特性表现为完全覆盖,即可覆盖区间[1,31]中的所有整数

请确定珠串上6颗宝珠上的整数及其相串的顺序;


6个整数和为s的全覆盖

1.说明:

为叙述方便,称沿圆圈若干个相连整数之和为“部分和”,部分和为区间[1,31]中的所有整数不间断称为“完全覆盖”;

问题是要在如图所示圆上的6个小圆圈中各填入一个整数,这6个整数之和为31,且沿圆相连的若干个(1~6个)小圆圈中整数之和覆盖区间[1,31]中的所有整数;

佛珠数码示意图

为了确定和为31的6个整数取值及检验这6个整数顺序是否能完全覆盖,设置,设置a数组作标记,起点为a(0)=0,约定a(1)-a(0)为第1个数,a(2)-a(1)为第2个数,……,一般地a(i)-a(i-1)为第i个数;

因为共6个数,显然a(6)=31且与起点a(0)重合,因为6个数中至少有一个数为1(否则不能覆盖1),不妨设第1个数为1,即a(1)=1;

串上6个数的每一个数都可以与(约定顺时针方向)相连的1,2,……,5个数组成部分和,易知共有31个部分和;

为构造部分和方便,定义a(7)与a(1)重合,即a(7)=a(6)+a(1ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值