自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

double_main的博客

公元2016年11月的最后一天,我开通了我的CSDN 博客,从此我的故事开始了!

  • 博客(73)
  • 收藏
  • 关注

原创 古代趣算

我国古代数学家研究了很多涉及社会生活各个方面的有趣的计算问题,其求解通常归结为解不定方程或多元方程组;百鸡问题公元前五世纪,我国古代数学家 张邱健 在《张邱健算经》一书中记有一个有趣的数学问题:今有鸡翁一值钱五,鸡母一值钱三,鸡雏三值钱一,用百钱买鸡百只,问鸡翁、母、雏各几何?这就是数学史上著名的“百鸡问题”;宋代杨辉的算数中有类似的问题,中古时其他各国也有相仿问题流传,例如印度算书和阿拉伯学者 艾

2017-01-15 18:33:38 1378

原创 韩信点兵

在中国数学史上流传着一个“韩信点兵”的故事:韩信是汉高祖刘邦手下的大将,他英勇善战,智谋超群,为汉朝建立了卓越功劳,据说韩信的数学水平也非常高超,他在点兵的时候,为了知道有多少个兵,同时又能保住军事机密,便让士兵排队报数:按从1至5报数,记下最末一个士兵报的数为1;再按从1至6报数,记下最末一个士兵报的数为5;再按1至7报数,记下最末一个报的数为4;最后按1至11报数,最末一个士兵报的数为1

2017-01-14 10:44:11 5510

原创 双码二部数序列

双码二部数定义:由两个不同数码组成,每个数码多于1位时相连而不分开的正整数称为双码二部数,其中处于高位相连数字称为高部,处于低位相连数字称为低部;例如330是一个3位双码二部数:高部数字为3,高部位数为2;低部数字为0,底部位数为1,而333只有一个数码,4407有三个数码,4474的数码4呈分开状态,都不是双码二部数;试统计n位双码二部数的个数,并求出n位双码二部数从小到大排序序列的第m项;输入正

2017-01-14 10:06:12 1293

原创 P数序列

定义十进制中没有重复数字的正整数为P数,指定p数按升序排列所得序列为指定P序列;试求指定m位P数的个数,并求出m位P序列的第n项;输入正整数m(2<=m<=10)和n(2<=n),输出m位P数的个数,同时输出m位P序列的第n项(若n大于m位P数的个数,则输出提示信息);1.枚举设计:(1)、枚举设计要点;通过循环求得m位最小与最小的P数a、b,设置递增循环枚举a~b中的所有整数x,以确保序列为升序排

2017-01-13 09:05:27 998

原创 指数序列

指数序列包括双指数与多指数,还可以引申出“指数积”,内容非常丰富;本节探讨双指数序列并引申至3指数序列,同时探讨应用多种思路与算法求解双指数序列;2-3指数序列设x,y为非负整数,试计算集合:M={ 2^x,3^y | x>=0,y>=0 }的元素由小到大排列的双指数序列第n项与前n项之和;1.递推设计要点:集合由2的指数与3的指数组成,实际上是给出两个递推关系,集合元素所构成的序列为2指数序列;设

2017-01-12 22:41:03 5053

原创 等差素数列

小于10的素数中有3、5、7组成等差数列,在30以内的素数中,有5、11、17、23、29组成等差数列;在指定区间[x,y]如果存在成等差数列的n(n>=3)个素数,试求n的最大值,并输出一个最多项数的等差素数列;1.设计要点:(1)、标注素数;通过m循环枚举指定区间[x,y]内的奇数,应用试商法探求素数,设置a数组并通过a[m]=1标注奇数m为素数;(2)、扫描等差数列;设置d循环(2~(y-x)

2017-01-12 13:00:36 1639

原创 双关系递推数列

集合M定义如下:(1)1∈M;(2)x∈M→2x+1∈M,3x+1∈M;(3)再无别的数属于M;试求集合M的元素从小到大排序的第n个元素;1.枚举设计求解:该题有2x+1和3x+1 两个递推关系,加大了程序设计难度;(1)设计要点;设置变量i:i从2开始递增1取值,若i可有已有的项m(j)用两个递推关系之一堆得,即满足条件i=2*m(j)+1或i=3*m(j)+1,说明i是m数列中的一项,赋值给m(

2017-01-11 08:24:13 5838

原创 裴波那契数列与应用

13世纪初,意大利数学家 裴波那契(Fibonacci) 在所著的《算盘书》中提出“兔子生崽”的趣题:假设兔子出生后两个月就能生小兔,且每月一次,每次不多不少恰好一对(一雌一雄),若开始时有初生的小兔一对,问一年后共有多少对兔子?裴波那契数列是由这一“兔子生崽”问题引出的一个著名的递推数列,裴波那契数列的应用相当广泛,国际上已有许多关于裴波那契数列的专著与学术期刊,我国 周持中教授 所著的 《裴

2017-01-10 16:11:15 4004

原创 真分数序列

试统计分母在指定区间[a,b]的最简真分数(分子小与分母,且分子分母无公因数)共有多少个,并求这些最简真分数升序序列的第k项;1.设计要点:(1)、设置数组c(k)、d(k)分别存储第k个最简真分数的分子与分母;(2)、设置枚举循环;设置j(a~b)循环,枚举指定范围[a,b]内分数i/j的分母;设置i(1~j-1)循环,枚举对每一个分母j的分数的分子;(3)、忽略非最简i/j;若分子i与分母j存在

2017-01-10 11:51:12 1591

原创 猴子爬山

一个顽猴在一座有40级台阶的山上爬山跳跃,猴子上山一步可跳1级或跳3级,试求顽猴上山的40级台阶有多少种不同的跳法;1.递推设计:这一问题实际上是一个整数有序可重复拆分问题;试设置数组应用递推求解,设上k级台阶的不同跳法为f(k)种;(1)、探求f(k)的递推关系;上山最后一步到达第40级台阶,完成上山,共有f(40)种不同的爬法,到第40级之前位于哪一级呢?无非是位于第39级(上跳1级即到),有f

2017-01-10 10:03:18 8935 3

原创 同基因积式

在以上构建同基因和式的基础上本节更进一步,探讨涉及同基因数乘积的两类数式:同基因倍积式与同基因乘积式;同基因倍积式定义n位同基因倍积式:若n位整数u的k(2<=k)倍s=u*k与u同基因,则称u*k=s为一个n位同基因倍积式;例如,1359*7=9513是一个4位同基因倍积式,10449*9=94041是一个5位同基因倍积式;同时为了避免出现类似13590*7=95130的衍生现象,要求同基因倍积式

2017-01-09 21:40:21 356

原创 同基因和式

同基因数是由同一批数字通过不同排列所得的位数相同的整数,因此同基因数又称为排列数;例如,由1、0、2、2这4个数字通过不同排列组成的4位整数1022、1202、1220、2012、2021、2102、2120、2201、2210是同基因数,而0122实际上只是一个3位数,并不含“0”,与上述诸数不同基因;本节探索一类涉及同基因数的新颖数式——同基因和式;由十进制同基因整数u、v、s组成的和式u+v=

2017-01-09 10:10:37 407

原创 对称运算式

对称运算式构造简洁优美,内涵丰富,赏心悦目;本节探讨m+n位对称单运算式与m+n+r位对称双运算式,前者只含积或和运算,后者包含双和、双积与和积两种运算,两类数式都体现出整体对称美;对称单运算式下面在探讨十进制对称单运算式的基础上推广至一般p进制对称单运算式;定义:把以下含乘积或求和运算的十进制等式;a*b=b1*a1a+b=b1+a1称为对称单运算式,前式为对称积式,后式为对称和式,其中a是

2017-01-08 19:50:57 988

原创 人来人往

% 有很多人会叫你的名字,但只有一个人让你的名字听起来那么特别

2017-01-08 08:52:12 317

原创 优美数式

本节探讨一类具有 趣味填数特性的数式——优美数式 ,之所以称为优美,是因为数式中各数字不重复出现;优美和式试把1,2,……,9这9个数字分别填入以下和式的9个口中,为体现优美,要求1~9这9个数字在式中出现一次且只出现一次,使得和式成立:口 口 口 + 口 口 口 = 口 口 口;约定以上和式左边的前3位数小于后3位数,且右边的和数相同的为同一和式,即要求所有和式的右边和不同;搜索并输出所有9数

2017-01-07 11:10:48 1178

原创 桥本分数式

日本数学家 桥本吉彦教授 于1993年10月在我国山东举行的中日美三国数学教育研讨会上向与会者提出以下填数趣题: 把1,2,……,9,这9个数字填入下式的9个方格中(数字不得重复),使下面的分数等式成立:口/口口 + 口/口口 = 口/口口桥本教授当即给出了一个解答,这一填数趣题的解是否唯一?如果不唯一究竟有多少个解?试求出所有解答(等式左边两边分数交换次序只算一个解答);9数字分数式1.说明:

2017-01-06 18:02:12 6269

原创 埃及分数式

埃及分数简介金字塔的故乡埃及也是数学的发源地之一,古埃及数系中,记数常采用分子为1的分数,称为“埃及分数”;人们研究较多且颇感兴趣的问题是:把一个给定的整数或分数转化为若干个不相同的埃及分数之和,常约定分解式中不得包含与待分解分数同分母的埃及分数,当然,转化的方法可能有很多种,常把分解式中的埃及分数的个数最少或在个数相同时埃及分数中最大分母为最小的分解式称为最优分解式;把给定整数或分数分解为埃及

2017-01-06 09:20:51 2030

原创 奇数序列运算式

程序设计除了探索求解数之外,数式也是程序设计探求的重要方面;本节集中探讨各类有特殊意义的数式,即有整数式、分数式,也有综合运算式,新推有趣的“对称运算式”与“同基因数式”为创意点;试在由指定相连奇数组成的序列的每相邻两项中插入运算符号:若相邻两项都是合数,则两项中插入减号“-”;若相邻两项中一项为合数,另一项为素数,则两项中插入加好“+”;若相邻两项都是素数,则两项中插入乘号“*”;输入奇数

2017-01-05 18:24:14 1058

原创 抽牌概率

本节探讨两例:有趣的抽牌概率计算,其中单色的数字牌设计比较简单,而由多花色扑克组成的数字牌涉及编码的转换,其中设计较为复杂,也更具有吸引力;涉及到概率计算,必须统计事件的总体数与满足指定条件事件的个数,这是概率计算的基础;抽数字牌有n张数字牌,数字牌上分别标有整数1,2,3,……,n;在这n张数字牌中同时抽取3张,记3张牌上的整数之和为素数的概率为p(n);输入n(n>=10),计算并输出概率p(n

2017-01-05 16:50:48 2365

原创 序号与代码

扩展Excel表列序号为1,2,……的列代码依次为A,B,C,……,Y,Z;AA,AB,……,AZ;BA,BB,……,AZ;BA,BB,……,BZ;……;ZA,ZB,……,ZZ;AAA,……;试进行列序号与列代码的相互转换;输入列序号(不超过15位整数)或列代码(不超过10个大写字母),输出对应的列代码或对应的列序号;例如,输入列序号28,输出对应的列代码AB;输入列代码BA,输出对应的列序号53;

2017-01-04 18:02:54 1339

原创 加密与解密

加密与解密是通信中最常用的数据转换手段,先了解加密与解密的基本过程;加密:应用加密算法与密钥对明文(尚未加密的原文)实施加密,转换成密文发送;解密:接收到密文后,应用相应算法与同一密钥对密文解密,转换为明文;加密与解密的双方根据事先的基本约定(包括加密算法)与所给密钥进行加密或解密,而第三方不知约定,即使知晓密文与密钥,也很难进行解密了解通信的内容;试设计简单的加密与解密程序,并进行运行演示;1.加

2017-01-04 14:36:23 3475

原创 金额大写

在通常的金融交易中,为了稳妥与慎重,常常需要把一笔阿拉伯数字书写的金额转换成汉字大写金额;例如,把160390.50转换成大写汉字串: 壹拾陆万零叁佰玖拾元伍角整;试把从键盘输入的阿拉伯数字金额(整数部分最多为15位,可带2位小数)转换为符合大写转换习惯的汉字大写金额;1.说明:注意到转换金额整数部分最多可为15位(达百万亿),如果带小数,将达到18位,为此程序采用字符串形式输入,用变量n统计字符串

2017-01-04 09:26:27 1842

原创 数制转换

计算机内部运行是二进制,而程序设计通常为十进制;数的进制转换一般在2~16进制之间相互转换,可以进行整数转换,也可以进行小数转换;十进制转换p进制试把一个十进制数(可带小数)转换为一般的p(2~16)进制数;1.说明:首先把输入的十进制数n分解为整数部分n1与小数部分n2;(1)、整数转换;十进制整数n1转换为p进制整数,实施反复地“除p取余”,直到商为0时停止;注意到第一个余数为末位数,即输出结果

2017-01-03 21:15:09 489

原创 分数化小数

数据处理是程序设计的重要内容,而 数据转换则是数据处理的基础;本章探讨几个有趣的数据转换问题,包括 分数化小数 、 数制转换 、 序号与代码转换 、 金额大写 、 以及简单的 加密解密处理 ;接受一个N/D形式的分数,其中正整数N分子,正整数D为分母(约定N,D<200),输出它的小数形式,如果它的小数形式存在循环节,要将其用括号括起来,并计算输出循环节的位数;例如: 1/3=.(3) ; 3/8

2017-01-03 16:46:10 1121

原创 子集和问题

子集和问题:集合s是一个有n个正整数构成的集合{w1,w2,……,wn},指定正整数c,判断正整数c,判断是否存在S的一个子集S1,使得w∈S1,∑w=c;若子集和问题有解,则输出子集S1的元素;1.说明:设n个元素(正整数)存储在w数组中,应用动态规划设计求解;目标函数: max(n)∑(i=1)xi wi约束条件: (n)∑(i=1)xi wi<=c(xi∈{0,1},c,wi∈N*,i=1,2

2017-01-03 16:11:19 1798

原创 六六大顺

某古寺的转经筒上贴有6个小圆圈(如图),每个小圆圈中有一个数字,通过专家长期研究后揭示这6个象征祥瑞的数字呈现“六六大顺”特性:从任一数字开始,顺时针旋转一周得到一个6位数,在得到的所有6个6位数中,设最小的整数为m,其余5个都是m的倍数;试求出转经筒上6个数字的分布及最小的6位整数m;6个整数1.说明:(1)、设置枚举循环;显然整数m的6个数字中不含“0”,否则其余5个数中会出现5位数,同时整

2017-01-03 11:13:27 1148

原创 数码串珠

在某寺遗址考古发掘中意外发现一串奇特的数码珠串,珠串上共串缀有6颗宝珠,每一宝珠上都刻有一个神秘的整数,长期以来,无人知晓这6颗数码串珠究竟有什么作用,专家通过考证,揭示这一数码串珠具有以下奇异特性:(1)、这6颗宝珠上的整数互不相同,6个整数之和为31;(2)、沿珠串相连的若干颗(1~6颗)珠上整数之和为1,2,……,31不间断,这一象征祥瑞的特性表现为完全覆盖,即可覆盖区间[1,31]中的所有整

2017-01-03 07:29:38 869

原创 古尺神奇

有一年代尚无考究的古尺长29寸,因磨损日久尺上的刻度只剩下7条,其余刻度均已不复存在,神奇的是,使用该尺仍可一次性度量1~29之间任意整数寸长度;设计程序,试确定古尺上7条刻度的位置分布;7刻度度量29尺长1.说明:这是一道有一定难度的实用性较强的趣题;要使长为29(单位略)的直尺一次性度量1~29之间的任意整数长(简称完全度量),少于7条刻度是不行的;事实上,假若只有6条刻度,连同尺的两条端线共8

2017-01-02 20:00:32 1390

原创 等幂和数组

如果两组由不同的n(n>=3)个正整数组成的数组中,两数组的各个数之和相等,且两数组的各个数从2次幂之和、3次幂之和以至到n-1次幂之和均相等,则这两个数组称为等幂和n元组;本节从探讨等幂和3元组至等幂和n(n<=6)元组,其中递推关系的建立与实施是重点,也是难点;等幂和3元组把6个互不相等的正整数a、b、c、d、e、f分成两组,若这两个数组具有以下两个相等特性:a+b+c=d+e+f=sa^2

2017-01-02 10:22:46 2082 2

原创 整数分解与重组

作者:马启代我们坐在沙发上;只有喝水的声音;他打开手机上的音乐;屋子里便多出一种声音。水喝够了;手机没电了;我听见自己微细的呼吸。我们是曾经爱过彼此的人;两年后,我们的身体;对彼此都再也发不出;任何声音。而为着什么;在这张做过爱的沙发上;我们却坐了整整一下午。

2017-01-01 23:35:19 2132

原创 《没有比这更遥远的距离了》

作者:马启代我们坐在沙发上;只有喝水的声音;他打开手机上的音乐;屋子里便多出一种声音。水喝够了;手机没电了;我听见自己微细的呼吸。我们是曾经爱过彼此的人;两年后,我们的身体;对彼此都再也发不出;任何声音。而为着什么;在这张做过爱的沙发上;我们却坐了整整一下午。

2017-01-01 13:18:24 346

原创 相亲数环

* 整合重组 与 分解转化 是数据处理相辅相成的手段与技巧 *;整数通过巧妙整合重组为若干有特殊意义的数或数组,是培养与检验程序设计技能的重要方面;数学大师毕达哥拉斯早年发现,220与284两数之间存在这奇妙的联系:220的真因数之和为:1+2+4+5+10+11+20+22+44+55+110=284;284的真因数之和为:1+2+4+71+142=220;毕达哥拉斯把这样的数对a,b称

2017-01-01 09:50:39 1320

原创 泊松分酒

泊松分酒是一个著名的智力测试题,也是一个有难度的过程模拟经典案例;1.案例提出:法国数学家泊松(Poisson)曾提出以下分酒趣题:某人有一瓶12品脱(容量单位)的酒,同时有容积为5品脱与8品脱的空杯各一个,借助这两个空杯,如何将这瓶12品脱的酒平分?我们要解决一般的平分酒案例:借助容量分别为bv与cv(单位为整数)的两个空杯,用最少的分倒次数把总容量为偶数a的酒平分,这里正整数bv、cv与偶

2017-01-01 07:28:05 2679 3

原创 《悬崖》

作者:康苏埃拉躺进暮年的词典;我会把世界从头翻阅;会把我途径的一切读给你听:一群蓝色马、悬崖、失真的雨依然在下;为了和你相认于雨水;我会抹去自己的脸;会走回镜中。把世界颠倒过来、重读一边:失真的雨依然在下、悬崖、一群蓝色马;——无论如何;每次都要途径悬崖。是的,我看见悬崖始终处于最中心的位置;正如每次途径你时;我所握紧的那片陡峭的静止。

2016-12-31 20:03:58 580

原创 拔河分组

有12个同学要分成两个组进行拔河比赛,为使比赛公平,分组时要求每组6个同学,且两组的体重之和相等;已知这12个同学的体重分别为:38、39、47、35、46、58、51、42、36、40、59、39;根据他们的体重(为方便计算以全部转化为整数,单位为kg)实施分组,若无法实现数据个数与数据和均相等的分组,标注为“无法均分”;基本方法- -双均分法1.说明:我们把“要求每组数据个数相等数据和也相等”的

2016-12-31 14:02:04 6975 3

原创 整币兑零

整币兑零是一个特殊的分解统计案例,其不同的的兑换种类与零币的种类及各零币的具体数值密切相关;本节探讨特定的6种零币与一般从键盘输入的m种零币的两类兑零统计;特定整币兑零把一张1元整币兑换成1分,2分,5分,1角,2角和5角共6种零币,共有多少种不同兑换种数?一般地,把一张二元整币,5元整币或一张n元整币兑换成1分,2分,5分,1角,2角和5角共6种零币,共有多少种不同兑换种数?1.说明:一般地设整币

2016-12-30 17:41:22 2017

原创 整数拆分

整数拆分是一种特殊的分解,要求把一个指定的整数(称为整数体或和数)分解为不重复的若干个整数(称为零数或部分)之和,不记零数的次序;整数拆分的对象与要求多种多样,拆分设计的难度取决于对零数的限制条件;本节具体探讨两种不同限制零数的拆分;零数为连续整数零数为连续正整数的整数拆分是最简单的一种拆分;试把一个正整数n拆分为若干个(不少于2个)连续正整数之和,例如,n=15,有3种拆分:15=1+2+3+4+

2016-12-29 12:20:33 3385

原创 积最大的整数分解

第18届国际数学奥林匹克竞赛第4题为:求和为1976的正整数之积的最大值?这一整数分解题要求分解整数的个数不限,各分解整数的大小也不限,正确结果是把1976分解为658个3与1个2,积P=2*3^658最大;如果保留分解个数不限,但要求各分解的整数互不相同,也是一个很有意思的整数分解案例,例如如何把2017分解为若干个互不相同的正整数之和,使这些互不相同的正整数之积最大;进行一般化处理,使把指定

2016-12-28 08:41:13 1370

原创 因式分解

因式分解是基础的数学课题,当分解式中系数较大时,靠人工分解并非轻而易举,这就为应用程序设计实施因式分解留下空间;本节探讨最简单的二次三项式因式分解;已知二次三项式 a*x^2+b*x*y+c*y^2 中的系数a、b、c为整数,其中a为正整数,b、c为任意非零整数,试在整数范围内分解因式;若在整数范围内无法进行因式分解,应予以指出;1.说明:在整数范围内进行因式分解与整数的因数分解密切相关;(1)、判

2016-12-27 09:20:40 1114

原创 质因数分解

前序: 分解作为数据处理的常用手段,集中体现智能思考与技巧运用,是培养与检验程序设计技能的重要方面;整数分解质因数 是整数分解中最简单也是最基本的分解案例;本节是按质因数的乘积形式与指数形式分别设计求解;分解为质因数乘积形式对给定区间[m,n]的正整数分解质因数,每一整数分解表示为质因数从小到大顺序的乘积形式,如果被分解的整数本身是素数,则注明为素数;例如,2016=2*2*2*2*2*3*3*7

2016-12-26 20:34:37 4464

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除