# 以下是computer vision：algorithm and application计算机视觉算法与应用这本书中附录里关于计算机视觉的一些测试数据集和源码站点，我整理了下，加了点中文注解

ComputerVision:

Algorithms and Applications

Richard Szeliski

C.1 数据集

(http://homepages.inf.ed.ac.uk/rbf/CVonline ), VisionBib.Com (http://datasets.visionbib.com/ ), and Computer Vision online (http://computervisiononline.com/ ), 有更多最新的数据集和软件。

CUReT: Columbia-Utrecht 反射率和纹理数据库Reﬂectance and TextureDatabase, http://www1.cs.columbia.edu/CAVE/software/curet/  (Dana, van Ginneken, Nayaret al. 1999).

Middlebury Color Datasets:不同摄像机拍摄的图像，注册后用于研究不同的摄像机怎么改变色域和彩色registeredcolor images taken by different cameras to study how they transform gamuts andcolors, http://vision.middlebury.edu/color/data/ Chakrabarti, Scharstein, and Zickler 2009).

Middlebury test datasets forevaluating MRF minimization/inference algorithms评估隐马尔科夫随机场最小化和推断算法,

http://vision.middlebury.edu/MRF/results/ (Szeliski, Zabih, Scharstein et al. 2008).

Afﬁne Covariant Featuresdatabase（反射协变的特征数据集） for evaluating feature detector and descriptor matching quality andrepeatability（评估特征检测和描述匹配的质量和定位精度）,   http://www.robots.ox.ac.uk/~vgg/research/affine/

(Miko-lajczyk and Schmid 2005;Mikolajczyk, Tuytelaars, Schmid et al. 2005).

Database of matched imagepatches for learning （图像斑块匹配学习数据库）and feature descriptor evaluation（特征描述评估数据库）,

(Winder and Brown 2007;Hua,Brown, and Winder 2007).

BerkeleySegmentation Dataset（分割数据库） and Benchmark of 1000 images labeled by 30 humans,（30个人标记的1000副基准图像）along with an evaluation,http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/  (Martin, Fowlkes, Tal et al.2001).

Weizmann segmentationevaluation database of 100 grayscale images with ground truth segmentations,

(Alpert, Galun, Basri et al. 2007).

TheMiddlebury optic ﬂow evaluation（光流评估） Web site, http://vision.middlebury.edu/flow/data/

(Baker,Scharstein, Lewis et al. 2009).

The Human-Assisted MotionAnnotation database,（人类辅助运动数据库）

http://people.csail.mit.edu/celiu/motionAnnotation/  (Liu, Freeman, Adelson etal. 2008)

High DynamicRange radiance（辐射）maps, http://www.debevec.org/Research/HDR/

(De-bevecand Malik 1997).

Alpha matting evaluation Website, http://alphamatting.com/ (Rhemann, Rother, Wang

et al. 2009).

Middlebury Stereo Datasets andEvaluation, http://vision.middlebury.edu/stereo/  (Scharstein

and Szeliski 2002).

StereoClassiﬁcation（立体分类） and Performance Evaluation（性能评估） of different aggregation（聚类） costs for stereo matching（立体匹配）,http://www.vision.deis.unibo.it/spe/SPEHome.aspx  (Tombari, Mat-

toccia, Di Stefano et al.2008).

Middlebury Multi-View StereoDatasets,

http://vision.middlebury.edu/mview/data/  (Seitz,Curless, Diebel etal. 2006).

Multi-view and Oxford Collegesbuilding reconstructions,

Multi-View Stereo Datasets, http://cvlab.epfl.ch/data/strechamvs/  (Strecha, Fransens,

and Van Gool 2006).

Multi-View Evaluation,  http://cvlab.epfl.ch/~strecha/multiview/ (Strecha, von Hansen,

Van Gool et al. 2008).

HumanEva: synchronized video（同步视频） and motion capture （动作捕捉）dataset for evaluation ofarticulated human motion, http://vision.cs.brown.edu/humaneva/  Sigal, Balan, and Black 2010).

The (New) Stanford Light FieldArchive, http://lightfield.stanford.edu/

(Wilburn, Joshi,Vaish et al.2005).

Virtual Viewpoint Video:multi-viewpoint video with per-frame depth maps,

http://research.microsoft.com/en-us/um/redmond/groups/ivm/vvv/  (Zitnick, Kang, Uytten-

daele et al. 2004).

Buffy pose classes, http://www.robots.ox.ac.uk/~vgg/data/  buffy pose classes/ andBuffy

stickmen V2.1, http://www.robots.ox.ac.uk/~vgg/data/stickmen/index.html  (Ferrari,Marin-

Jimenez, and Zisserman 2009;Eichner and Ferrari 2009).

H3D database of pose/jointannotated photographs of humans,

http://www.eecs.berkeley.edu/~lbourdev/h3d/   (Bourdev and Malik 2009).

Action Recognition Datasets,http://www.cs.berkeley.edu/projects/vision/action, has point-

ers toseveral datasets for action and activity recognition, as well as some papers.（有一些关于人活动和运动的数据库和论文） The humanaction database athttp://www.nada.kth.se/cvap/actions/  包含更多的行动序列。

C.2 软件资源

图像处理和变换 (滤波，形态学，金字塔);

图像几何学的变换 (旋转，改变大小);

直方图;

分割 (分水岭, mean shift);

特征检测 (Canny, Harris, Hough, MSER, SURF);

运动分析和物体分析 (Lucas–Kanade, mean shift);

相机矫正和3D重建

机器学习 (k nearest neighbors, 支持向量机, 决策树, boost-

ing, 随机树, expectation-maximization, 和神经网络).

Intel的Performance Primitives (IPP)library, http://software.intel.com/en-us/intel-ipp/，包含

MTALAB中的Image Processing Toolbox图像处理工具，http://www.mathworks.com/products/image/，包含常规的处理，空域变换（旋转，改变大小），常规正交，图像分析和统计学（变边缘，哈弗变换），图像增强（自适应直方图均衡，中值滤波），图像恢复（去模糊），线性滤波（卷积），图像变换（傅里叶，离散余弦变换）和形态学操作（连通域和距离变换）

VXL (C++Libraries for Computer Vision Research and Implemen-tation, http://vxl.sourceforge.net/)

图像编辑和视图包，例如Windows Live Photo Gallery, iPhoto, Picasa,GIMP, 和 IrfanView，它们对执行这些处理非常有用：常规处理任务，格式转换，观测你的结果。它们同样可以用于对图像处理算法有趣的实现参考，例如色调调整和去噪。

matlabPyrTools—MATLAB 下的源码对于拉普拉斯变换，金字塔, QMF/小波, 和

steerable pyramids, http://www.cns.nyu.edu/~lcv/software.php  (Simoncelli and Adel-

son 1990a; Simoncelli,Freeman, Adelson et al. 1992).

BLS-GSM 图像去噪, http://decsai.ugr.es/~javier/denoise/  (Portilla, Strela,Wain-

wright et al. 2003).

Fast bilateral ﬁltering code（快速双边滤波）, http://people.csail.mit.edu/jiawen/#code (Chen, Paris, and Durand 2007).

C++ implementation of the fastdistance transform algorithm,

http://people.cs.uchicago.edu/~pff/dt/  (Felzenszwalb andHuttenlocher 2004a).

GREYC’s Magic Image Converter,including image restoration software using regularization and anisotropicdiffusion, http://gmic.sourceforge.net/gimp.shtml (Tschumperl´ e and Deriche 2005).

VLFeat, 一个开放便捷的计算机视觉算法库

http://vlfeat.org/ (Vedaldi and Fulkerson 2008).

SiftGPU: A GPU Implementationof Scale Invariant Feature Transform (SIFT),

GPU实现的尺度特征性变换

http://www.cs.unc.edu/~ccwu/siftgpu/  (Wu 2010).

SURF: Speeded Up RobustFeatures, http://www.vision.ee.ethz.ch/~surf/

(Bay, Tuyte-laars, and VanGool 2006).

FAST corner detection, http://mi.eng.cam.ac.uk/~er258/work/fast.html

(Rosten and Drum-mond 2005, 2006).

Linux binaries for afﬁneregion detectors and descriptors, as well as MATLAB ﬁles to

compute repeatability andmatching scores,

Kanade–Lucas–Tomasi featuretrackers: KLT, http://www.ces.clemson.edu/~stb/klt/ (Shi and Tomasi 1994);

GPU-KLT, http://cs.unc.edu/~cmzach/opensource.html  (Zach,Gallup, and Frahm2008); Lucas–Kanade 20 Years On, http://www.ri.cmu.edu/projects/project 515.html  (Baker and Matthews 2004).

(Felzenszwalb and Huttenlocher2004b).

EDISON, 边缘检测和图像追踪,

(Meer and Georgescu 2001; Comaniciu and Meer2002).

(Shi and Malik 2000; Malik,Belongie, Leung et al. 2001).

Segmentation by weightedaggregation (SWA),利用加权集合的分割

http://www.cs.weizmann.ac.il/~vision/SWA  (Alpert, Galun, Basri et al.2007).

Non-iterative PnP algorithm,（非迭代PnP算法）

http://cvlab.epﬂ.ch/software/EPnP  (Moreno-Noguer, Lep-etit, and Fua 2007).

Tsai Camera Calibration（相机矫正） Software,

http://www-2.cs.cmu.edu/~rgw/TsaiCode.html  (Tsai 1987).

Easy CameraCalibration Toolkit,（简易相机校准工具包） http://research.microsoft.com/en-us/um/people/zhang/ Calib/ (Zhang 2000).

Camera Calibration Toolbox forMATLAB,

http://www.vision.caltech.edu/bouguetj/calib doc/ ; a C version is included in OpenCV.

MATLAB functions for multipleview geometry,

http://www.robots.ox.ac.uk/~vgg/hzbook/code/  (Hartley and Zisserman2004).

SBA: A generic sparse bundle(稀疏束) adjustment C/C++ package basedon the Levenberg–

Marquardt algorithm, http://www.ics.forth.gr/~lourakis/sba/  (Lourakis and Argyros 2009).

Simple sparse bundleadjustment (SSBA), http://cs.unc.edu/~cmzach/opensource.html .

Bundler, structure from motionfor unordered image collections(无序图像集),

http://phototour.cs.washington.edu/bundler/   (Snavely, Seitz, and Szeliski 2006).

dan 1996).

Optical ﬂow（光流） using total variation（全变量差） and conjugate gradientdescent（共轭梯度下降）, http://people.csail.mit.edu/celiu/OpticalFlow/  (Liu 2009).

TV-L1 optical ﬂow on the GPU, http://cs.unc.edu/~cmzach/opensource.html

(Zach,Pock, and Bischof2007a).

elastix: atoolbox for rigid（刚性） and nonrigid（非刚性） registration of images（配准图像）, http://elastix.isi.uu.nl/ (Klein, Staring, and Pluim 2007).

Deformable image registration（可变形的配准图像） using discreteoptimization（离散最优化）, http://www.mrf-registration.net/deformable/index.html

(Glocker, Komodakis, Tziritas et al. 2008).

Microsoft Research ImageCompositing Editor for stitching images,（图像拼接，图像合成）

HDRShop software for combiningbracketed exposures（包围式曝光） into high-dynamic range radiance images, http://projects.ict.usc.edu/graphics/HDRShop/.

Super-resolution（超分辨率） code,

http://www.robots.ox.ac.uk/~vgg/software/SR/  (Pickup 2007;Pickup, Capel,Roberts et al. 2007, 2009).

StereoMatcher, standalone C++stereo matching code,

http://vision.middlebury.edu/stereo/code/  (Scharstein and Szeliski2002).

Patch-based multi-view stereosoftware (PMVS Version 2),

http://grail.cs.washington.edu/software/pmvs/  (Furukawa and Ponce 2011).

Scanalyze: a system foraligning and merging range data,

http://graphics.stanford.edu/software/scanalyze/  (Curless and Levoy 1996).

MeshLab: software forprocessing, editing, and visualizing unstructured 3D triangular

meshes, http://meshlab.sourceforge.net/.

VRML viewers (various) arealso a good way to visualize texture-mapped 3D models.

Bayesian 3D person tracking（贝叶斯3D人体追踪）, http://www.cs.brown.edu/~black/code.html  (Sidenbladh,Black, and Fleet2000; Sidenbladh and Black 2003).

HumanEva: baseline code forthe tracking of articulated human motion,

http://vision.cs.brown.edu/humaneva/   (Sigal, Balan, and Black 2010).

Sample face detection code andevaluation tools,

A simple object detector withboosting,

(Hastie, Tibshirani, and Friedman 2001;Torralba, Murphy, and Freeman 2007).

Discriminatively（有区别） trained deformable（可变形） part models, http://people.cs.uchicago.edu/~pff/latent/  (Felzenszwalb, Girshick,McAllester et al. 2010).

Upper-body detector（上身检测）,

http://www.robots.ox.ac.uk/~vgg/software/UpperBody/  (Ferrari,Marin-Jimenez, andZisserman 2008).

2D articulated human poseestimation software,

http://www.vision.ee.ethz.ch/~calvin/articulated_human_pose_estimation_code/  (Eichner and Ferrari 2009).

AAMtools: An active appearancemodeling toolbox,

http://cvsp.cs.ntua.gr/software/AAMtools/  (Papandreou and Maragos2008).

FASTANN and FASTCLUSTER forapproximate k-means (AKM),

http://www.robots.ox.ac.uk/~vgg/software/ (Philbin, Chum, Isard et al. 2007).

Feature matching using fastapproximate nearest neighbors,

http://people.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN  (Muja and Lowe 2009).

Two bag of words classiﬁers, http://people.csail.mit.edu/fergus/iccv2005/bagwords.html

(Fei-Fei and Perona 2005;Sivic, Russell, Efros et al. 2005).

Bag of features andhierarchical（分层） k-means, http://www.vlfeat.org/  (Nist´ er and Stew´enius2006; Nowak, Jurie, and Triggs 2006).

A simple parts and structureobject detector,

(Fischler and Elschlager 1973; Felzenszwalband Huttenlocher 2005).

Support vector machines (SVM)software (

包含很多支持向量机的库,

SVMlight http://svmlight.joachims.org/ ;

LIBSVM, http://www.csie.ntu.edu.tw/~cjlin/libsvm/(Fan, Chen,and Lin 2005);

LIBLINEAR, http://www.csie.ntu.edu.tw/~cjlin/liblinear/  (Fan,Chang, Hsieh et al.2008).

Kernel Machines: links to SVM,Gaussian processes, boosting, and other machine

learning algorithms, http://www.kernel-machines.org/software .

Multiple kernels for imageclassiﬁcation,

(Varma and Ray 2007; Vedaldi, Gulshan, Varmaet al. 2009).

BLAS (BasicLinear Algebra Subprograms基本线性代数子程序),

http://www.netlib.org/blas/  (Blackford,Demmel, Dongarraet al. 2002).

LAPACK (Linear Algebra（线性代数） PACKage),

http://www.netlib.org/lapack/  (Anderson, Bai,Bischof etal. 1999).

ATLAS (Automatically TunedLinear Algebra Software),

http://math-atlas.sourceforge.net/  (Demmel, Dongarra, Eijkhoutet al. 2005).

Intel Math Kernel Library(MKL), http://software.intel.com/en-us/intel-mkl/.

AMD CoreMath Library (ACML),

Robust PCA code（鲁棒主成分分析）, http://www.salle.url.edu/~ftorre/papers/rpca2.html

(De la Torre and Black 2003).

Appendix A.3: Non-linear leastsquares非线性最小二乘

MINPACK, http://www.netlib.org/minpack/.

levmar: Levenberg–Marquardtnonlinear least squares algorithms, 非线性最小二乘

http://www.ics.forth.gr/~lourakis/levmar/  (Madsen, Nielsen, andTingleff 2004).

SuiteSparse (variousreordering algorithms, 各种各样的重排算法CHOLMOD) and SuiteSparse QR, http://www.cise.ufl.edu/research/sparse/SuiteSparse/  (Davis 2006, 2008).

PARDISO (iterative and sparsedirect solution),  http://www.pardiso-project.org/.

TAUCS (sparse direct,iterative, out of core, preconditioners),

HSL Mathematical SoftwareLibrary,  http://www.hsl.rl.ac.uk/index.html .

Templatesfor the solution of linear systems（线性系统解决问题的模板）, http://www.netlib.org/linalg/html templates/Templates.html  (Barrett, Berry, Chan et al.1994). Download the PDF for instructions（说明） on how to get the software.

ITSOL,MIQR, and other sparsesolvers,

Middleburysource code for MRF minimization（隐马尔科夫随机场最小化）, http://vision.middlebury.edu/MRF/code/  (Szeliski, Zabih, Scharsteinet al. 2008).

C++ code for efﬁcient beliefpropagation for early vision,

http://people.cs.uchicago.edu/~pff/bp/  (Felzenszwalb andHuttenlocher 2006).

FastPD MRF optimization（最优化） code,

http://www.csd.uoc.gr/~komod/FastPD  (Komodakisand Tziritas2007a; Komodakis, Tziritas, and Paragios 2008)

C描述的利用Box–Muller 变换产生高斯随机噪声

double urand()

{

return ((double)rand()) / ((double) RAND MAX);

}

void grand(double& g1, double& g2)

{

#ifndef M_PI

#define M_PI 3.14159265358979323846

#endif // M_PI

double n1 = urand();

double n2 = urand();

double x1 = n1 + (n1 == 0); /* guardagainst log(0) */

double sqlogn1 = sqrt(-2.0 * log (x1));

double angl = (2.0 * M PI) * n2;

g1 = sqlogn1 * cos(angl);

g2 = sqlogn1 * sin(angl);

}

GPU实现

GPU的出现，可以处理像素着色和计算着色，导致了实时应用的快速计算机视觉算法的发展，例如，分割，追踪，立体和运动估计（(Pock, Unger, Cremerset al. 2008; Vineet and Narayanan 2008; Zach,Gallup, and Frahm 2008）。一个好的资源来学习这些算法就是CVPR 2008 上关于Visual Computer Visionon GPUs的workshop。

http://www.cs.unc.edu/~jmf/Workshop_on_Computer_Vision_on_GPU.html他的论文可以在CVPR2008的会议集的DVD中找到。额外的关于GPU算法资源包括GPGPU网址和小组讨论http://gpgpu.org/还有OpenVIDIAWeb site, http://openvidia.sourceforge.net/index.php/OpenVIDIA

C.3 PPT和讲稿

UW 455:Undergraduate Computer Vision,

StanfordCS233B: Introduction to Computer Vision,

MIT6.869: Advances in Computer Vision,

Berkeley CS 280: Computer Vision, http://www.eecs.berkeley.edu/~trevor/CS280.html

UNC COMP776: Computer Vision, http://www.cs.unc.edu/~lazebnik/spring10.

Middlebury CS 453: Computer Vision,

Related courses have also been taught onthe topic of Computational Photography, e.g.,

CMU 15-463: Computational Photography, http://graphics.cs.cmu.edu/courses/15-463/.

MIT 6.815/6.865: Advanced ComputationalPhotography,

Stanford CS 448A: Computational photographyon cell phones,

SIGGRAPH courses on ComputationalPhotography,

C.4 参考文献：

• 本文已收录于以下专栏：

## computer vision：algorithm and application计算机视觉算法与应用这本书中附录里的关于计算机视觉的一些测试数据集和源码站点

• Lyanzh
• 2014年08月17日 10:26
• 1328

## 计算机视觉的一些测试数据集和源码站点

• 2016年02月04日 22:15
• 44KB
• 下载

## 计算机视觉的一些测试数据集和源码站点

• Augusdi
• 2013年04月28日 22:36
• 9353

## 计算机视觉的一些测试数据集和源码站点

zouxy09@qq.com http://blog.csdn.net/zouxy09 转自：http://blog.csdn.net/zhubenfulovepoem/article/detai...
• zouxy09
• 2013年04月07日 17:03
• 21997

## 计算机视觉的一些算法实现资源 Computer Vision Algorithm Implementations

Participate in Reproducible Research General Image Processing OpenCV(C/C++ code, BSD lic) Imag...

举报原因： 您举报文章：以下是computer vision：algorithm and application计算机视觉算法与应用这本书中附录里关于计算机视觉的一些测试数据集和源码站点，我整理了下，加了点中文注解 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)