自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(440)
  • 资源 (13)
  • 收藏
  • 关注

原创 各种插值方法的Python实现

本文介绍了python下一维向量的插值方法及代码实现

2025-04-24 13:13:38 753

原创 scp指令实现本地与服务器之间文件传输:常用指令及详细说明

此前,我仅使用简单的 scp 基础命令(如 scp file user@host:/path)完成文件传输,但对更高级的参数和用法了解有限。为提升效率并应对复杂场景,现系统整理 ​​SCP 的高级用法​​,包括端口指定、递归传输、限速控制、密钥认证等技巧,以便后续查阅和灵活使用。

2025-04-23 17:12:06 586

原创 Frequency Dynamic Convolution for Dense Image Prediction

本文提出频率动态卷积(FDConv),通过在傅里叶域学习固定参数量预算的方法,有效解决了上述问题。FDConv将参数量划分为具有不相交傅里叶索引的频率分组,从而在不增加参数量的前提下构建频率多样化的权重。​​​​为进一步增强适应性,提出核空间调制(KSM)和频带调制(FBM)。KSM在空间维度动态调整每个滤波器的频率响应,而FBM在频域将权重分解为不同频带并根据局部内容进行动态调制。​

2025-04-23 09:38:17 702

原创 面向一体化图像复原的内容感知型Transformer模型

本文提出​​DSwinIR​​(​​可变形滑动窗口Transformer图像修复模型​​),该模型引入了一种新颖的​​可变形滑动窗口自注意力机制​​,能够根据图像内容自适应调整感受野,使注意力机制能够聚焦重要区域并增强与显著特征对齐的特征提取能力。此外,本文还引入了​​中心集成模式​​,以减少注意力窗口中无关内容的干扰。通过这种方式,所提出的DSwinIR模型整合了​​可变形滑动窗口Transformer​​和​​中心集成模式​​,在充分发挥​​CNN​​和​​Transformer​​各自优势的同时,有效

2025-04-22 13:56:13 737

原创 YOLOv12综述:基于注意力的增强与先前版本的对比分析

YOLO(You Only Look Once)系列​​ 一直是​​实时目标检测​​领域的领先框架,通过不断改进​​速度与精度​​的平衡取得了显著进展。然而,由于​​高计算开销​​的问题,将​​注意力机制​​集成到YOLO中一直存在挑战。​​YOLOv12​​引入了一种新颖的方法,成功实现了​​基于注意力的增强​​,同时保持了​​实时性能​​。本文全面回顾了​​YOLOv12的架构创新​​,包括用于​​计算高效自注意力​​的​​区域注意力(Area Attention)​​、用于​​改进特征聚合​​的​​残

2025-04-21 16:12:57 846

原创 基于有效样本数的类别平衡损失 (Class-Balanced Loss, CVPR 2019)

本文认为随着样本数量增加,​​新增数据点带来的边际收益会递减​​。本文提出​​新颖的理论框架​​,通过将每个样本关联到一个​​小邻域​​而非单点来度量​​数据重叠​​。​​有效样本数量​​定义为​​样本体积​​,可通过简单公式​​(1−β^n)/(1−β)​​计算,其中n为样本数,β∈[0,1)是​​超参数​​。本文设计了​​重加权方案​​,利用每类的​​有效样本数量​​来​​重新平衡损失​​,从而得到​​类别平衡损失​​。

2025-04-19 13:14:58 763

原创 MambaIRv2:基于注意力状态空间的图像复原模型 (CVPR 2025)

基于这一思想,本文首先确定每个像素的语义标签。注意到ASE中的路由矩阵𝐑已学习到每个像素的提示类别,因此直接利用这一现成的语义信息重组图像。

2025-04-15 14:51:58 702

原创 行星际激波在日球层中的传播:Propagation of Interplanetary Shocks in the Heliosphere (第四部分)

通过对磁场和等离子体数据的可视化检查,本文识别出了磁场B、速度V、密度N和温度T的突变。利用这些参数变化,本文确定了每个航天器数据集中激波发生的具体时间。从各航天器观测到的激波时间点以及磁场和等离子体数据曲线的相似性来看,可以认为每个事件中不同航天器检测到的是同一个激波在不同位置的传播。以下两个事件的案例分析并非按特定顺序排列。首先分析了2007年5月7日的激波事件,然后是2007年4月23日的事件。

2025-04-15 06:58:09 141

原创 行星际激波在日球层中的传播:Propagation of Interplanetary Shocks in the Heliosphere (第三部分)

​(https://cdaweb.gsfc.nasa.gov/)下载了​。​发射(Wilson III等,2021)。​,详见http://www.ipshocks.fi/(如​。​(Gustafsson et al., 1997),其​。​(Luhmann et al., 2008),其​。​(Lepping et al., 1995),其​。​(Ogilvie et al., 1995),其​。​(McComas et al., 1998),其​。​(Balogh et al., 1997),其​。

2025-04-14 22:51:22 145

原创 行星际激波在日球层中的传播:Propagation of Interplanetary Shocks in the Heliosphere (第二部分)

太阳​​作为​​地球上所有生命的主要能量来源​​,同时也是​​太阳系动力学的主要决定者​​。与其他恒星类似,太阳同时具有​​复杂的内部动力学过程​​和​​对行星际空间的深远影响​​。本章将系统阐述太阳的​​内部结构​​及其​​重要的日球层活动​​,以完整揭示这些​​惊人动力学现象​​的起源机制。

2025-04-13 18:47:19 568

原创 行星际激波在日球层中的传播:Propagation of Interplanetary Shocks in the Heliosphere (参考文献部分)

Bibliography of < Propagation of Interplanetary Shocks in the Heliosphere >

2025-04-13 09:17:04 251

原创 行星际激波在日球层中的传播:Propagation of Interplanetary Shocks in the Heliosphere (第一部分)

行星际激波是日球层内关键的动力学过程之一。它们能将粒子加速至高能状态,产生等离子体波,并可能触发地球磁层中的磁暴,对地球技术基础设施造成显著干扰。本研究选取了两次IP激波事件,基于STEREO-A/B卫星、Wind卫星、Cluster卫星编队及ACE卫星的磁强计与离子等离子体测量数据,分析激波参数的时序变化特征。通过最小方差分析法(MVA)和磁共面法(CP)确定了激波法线方向。

2025-04-13 02:49:18 722

原创 行星际激波数据集 (2023)

本文推出的新版数据库在三个方面实现升级:首先优化了激波参数(特别是撞击角度和速度)的算法标准;其次扩充了激波事件前后伴随的太阳风和地磁参数;最后通过案例演示和结构说明,为研究者提供更完善的数据支持。数据库的应用展望部分着重探讨了撞击角度参数在地磁效应机理研究中的潜在价值。

2025-04-12 16:55:50 670

原创 行星际空间的磁流体动力激波:理论综述

系统介绍磁流体动力激波(Magnetohydrodynamic Shocks,MHD),包括间断MHD的RH方程(The Rankine-Hugoniot Equations for MHD Discontinuities)、激波法向量分解、激波类型、激波驱动源、MHD 激波的 RH 解、激波速度和法向量的计算方法。

2025-04-08 16:30:43 1082

原创 行星际介质与等离子体环境

行星际介质被一种叫做等离子体的导电流体所包围。当移动的等离子体或太阳风以其方式与磁场相互作用时,就会产生电流,进而产生改变等离子体运动的磁场。描述等离子体运动动力学的科学分支被称为磁流体动力学,简称MHD。在特殊条件下,MHD理论对应于流体方程和麦克斯韦方程的耦合系统。这些方程常用于研究等离子体的行为。

2025-04-07 16:26:28 893

原创 新的轻量级模型 LSNet: 见大聚小(See Large, Focus Small) CVPR 2025

具体而言,将x_i的第c个通道记为x_ic(属于第g组),通过N_{K_S}(x_ic)与w^∗_ig∈R^{K_S×K_S}的卷积运算获得其聚合特征表示y_ic。LS卷积的计算主要包含三部分:P_ls中的逐点卷积、P_ls中K_L×K_L的深度卷积,以及A_ls中K_S×K_S的卷积聚合。​(N_{K_L}(x_i)表示以x_i为中心的K_L×K_L邻域)。{K_S}(x_i)**​(表示以x_i为中心的K_S×K_S邻域)。,其上下文区域是以x_i为中心的K×K邻域,记为N_K(x_i)。

2025-04-04 05:33:38 1380

原创 地球弓形激波前端1分钟和5分钟太阳风数据集

SPDF About OMNIWeb Data (nasa.gov)The data made accessible through this interface are 1-min-averaged, field/plasma data sets shifted to the Earth's bow shock nose(BSN). This "High Resolution OMNI" (HRO) data set involves an interspersal of BSN-shifted ACE,

2025-04-03 10:13:11 841

原创 SegMAN:基于状态空间模型与局部注意力的全尺度上下文建模语义分割方法 CVPR 2025

由于第四阶段的特征图分辨率降至(H/32×W/32),此时采用计算可行的全局自注意力来替代SS2D,以获得更强大的全局上下文建模能力。高效实现全局注意力,并使用全注意力解码器进行全局和多尺度上下文建模,但由于依赖下采样特征进行token-to-region注意力,会丢失细粒度细节。因此,本文的目标是使分割网络能够同时实现高效的全局上下文建模、高质量的局部细节编码以及针对不同输入分辨率的丰富多尺度特征表示。特征图Fi的空间分辨率为H/2^(1+i)×W/2^(1+i),其中H和W分别是输入图像的高度和宽度。

2025-03-31 16:46:42 990

原创 OMNIWeb: High Resolution OMNI 完整介绍

本说明阐述该界面提供的访问与可视化功能。其底层数据——高分辨率OMNI(HRO)数据集由ACE、Wind、IMP 8及Geotail卫星的1分钟平均磁场与等离子体数据经动态模型弓激波鼻位置时移校正后交织构成,具体技术细节详见配套文件OMNIWeb Data Explorer。特别说明,本界面提供的所有变量均在该文件中予以详细定义。

2025-03-31 15:18:36 696

原创 OMNI 2数据集与OMNIWeb界面概述

该数据集包含来自地球轨道和L1拉格朗日点(距地球约225个地球半径)多艘航天器的小时分辨率太阳风磁场与等离子体数据,同时涵盖高能质子每小时通量、地磁活动指数(AE、Dst等)及太阳黑子数。该界面提供多模式访问:不仅支持OMNI 2数据集及其源数据的查询,还可获取未纳入OMNI 2的其他太阳风数据,以及关于OMNI系列数据集的详细文档。OMNIWeb界面提供对多源OMNI 2数据集的访问权限,包括构成OMNI 2的独立数据集以及相关详细文档。OMNI 2数据集与OMNIWeb界面概述。" 章节下的两个选项。

2025-03-31 13:53:46 746

原创 日光层激波数据库: 方法文档

所有数据均从协调数据分析网(CDAWeb)下载。下载的参数如表1所示。对数据进行的初步处理主要包括以下内容:从等离子体数据中剔除明显的虚假尖峰;此外,若尚未完成相关调整,则将时间标签校准至实际测量间隔的中心位置(此项操作仅针对来自 ACE 和 STEREO 航天器的数据)。有关参数分辨率、所采用的坐标系以及其他与航天器相关的特性详情

2025-03-31 11:35:01 326

原创 OMNIWeb 数据介绍

该数据集还提供由小时数据衍生的日分辨率、27天分辨率和年分辨率数据。用户可在https://omniweb.gsfc.nasa.gov/ow.html获取完整的数据描述和访问方式。本界面及其多个底层接口提供访问的所有数据都具有以下共同特点:它们与日球层研究相关,和/或为研究太阳风-磁层耦合提供太阳风输入数据,且这些数据均存储于戈达德太空飞行中心/空间物理数据设施(GSFC/SPDF)。高分辨率数据:https://omniweb.gsfc.nasa.gov/html/omni_min_data.html。

2025-03-29 09:36:59 805

原创 行星际激波特征分析及其在太阳风激波自动检测算法开发与优化中的应用

对人类评估太阳风数据以识别行星际(IP)激波的研究依赖于启发式方法和模式识别,其中前者更易于算法表示和自动化。此类检测算法可提前预警即将到来的激波,从而为后续地磁风暴提供更长的预警时间【意义】。然而,如过去和当前研究表明,仅通过算法处理捕获激波具有挑战性【问题】。本文对L1点观测到的209个IP激波进行了统计分析,并利用这些信息优化了一套用于自动化太阳风激波检测算法的激波识别标准。为了确定算法中阈值范围,本文通过分析ACE航天器上SWEPAM和MAG仪器8年的IP激波数据,量化了太阳风密度、速度、温度和磁场

2025-03-27 18:07:33 824

原创 近地轨道快速行星际激波的特性与驱动源(1995–2013年)​

本文针对跨越一个太阳活动周期的快速前向(FF)与快速反向(FR)行星际激波的特性及驱动源开展了全面统计分析。研究综合了1995至2013年间通过近地观测(Wind和ACE卫星)及STEREO-A卫星识别的679个激波事件数据,发现除太阳活动极小期外,FF激波在所有太阳活动相位中均占主导地位。近100%的FR激波由慢-快流相互作用区(SIRs)驱动,而除太阳极小期外,日冕物质抛射(CMEs)是FF激波各相位的主要驱动源。CME驱动的FF激波发生率及中位速度与太阳黑子周期同步变化,SIR相关激波则无此关联特征。

2025-03-27 14:36:56 300

原创 自动行星际激波检测及其在Wind观测中的应用

本文提出了一种自动化的两步检测算法,用于在实时数据流中识别行星际 (IP) 激波,而无需考虑其类型。该算法旨在未来太阳轨道器任务 (Solar Orbiter mission) 中实施,以触发高分辨率数据向地球的传输。算法的第一步基于一个质量因子 Q 的确定,Q 用于指示等离子体参数(质子密度和整体速度)以及磁场强度的突变 。

2025-03-27 12:19:30 940

原创 IPShocks:行星际激波数据库

IPShocks 网站是一个庞大的资料库,为研究人员提供来自诸如“风”号、“先进成分探测器”号、“太阳和日球层探测器”A 号、“太阳和日球层探测器”B 号、“赫利俄斯”A 号、“赫利俄斯”B 号、“尤利西斯”号、“四重奏”号、“深空气候观测站”号、“旅行者”1 号、“旅行者”2 号、“综合日地关系观测台”号、“帕克太阳探测器”号和“太阳轨道飞行器”号等航天器任务观测到的激波的详细信息,涵盖了从 20 世纪 70 年代至今的时期。,从而实现更快的响应时间,并对太阳活动有更深入的了解。的活跃且智能的工具。

2025-03-26 15:10:56 908

原创 Identification and Characterization of Interplanetary Shocks: 行星际冲击的识别和表征介绍

激波识别的主要目标是通过观测数据确定激波的存在、类型及其基本参数,具体工作包括:参数跳跃条件分析驱动源分类激波法线方向与几何结构激波表征旨在解析其物理结构、动力学过程及对周围环境的影响,具体工作包括:激波结构分析粒子加速机制上游波动与湍流能量分配与加热机制与行星磁层的相互作用

2025-03-24 13:47:12 428

原创 平均激波法向量(Mean Shock Normal Vector)

平均激波法向量(Mean Shock Normal Vector)​ 是描述激波面几何方向和传播特性的核心参数,定义为垂直于激波面的单位向量(通常记为 n)。它在激波分类、粒子加速机制分析以及多卫星联合观测中具有关键作用。

2025-03-24 12:01:00 248

原创 快磁声速马赫数(Fast Magnetosonic Mach Number, Mfast​)​

快磁声速马赫数(Fast Magnetosonic Mach Number, Mfast​)​ 是等离子体物理学中描述流动速度与快磁声速相对大小的关键无量纲参数,用于判断磁化等离子体中激波的形成类型、能量耗散机制以及流动的稳定性。它与阿尔芬马赫数(MA​)和声速马赫数(Ms​)共同构成激波物理分析的核心框架。

2025-03-24 11:56:03 564

原创 阿尔芬马赫数(Alfvénic Mach number, MA​)

​ 阿尔芬马赫数(Alfvénic Mach number, MA​)是等离子体物理学中描述流动速度与阿尔芬波速相对大小的无量纲参数,用于表征磁化等离子体中流体动力学和电磁效应的耦合强度。它在激波物理、太阳风动力学、磁层物理及实验室等离子体研究中具有核心地位。阿尔芬马赫数定义为等离子体流动速度(U)与局域阿尔芬速度(VA​)的比值:其中:物理意义:​激波形成的临界条件 当等离子体流动速度超过局域阿尔芬速度(MA​>1),磁流体力学(MHD)激波可能形成。例如:​激波类型与结构​磁重联与湍流 在磁重联区域

2025-03-24 11:51:12 874

原创 平均激波法向角(Mean Shock Normal Angle)

是空间物理和等离子体研究中描述激波面几何特征的关键参数,用于量化激波法线方向与某一参考方向(如太阳风速度、背景磁场方向)之间的平均夹角。是理解激波几何与物理过程的核心参数,其值通过卫星观测或理论模型确定,直接影响激波能量分配、粒子行为及空间环境效应。:定义激波的“倾斜角”(obliquity angle),决定激波类型(平行/垂直)。:法线与磁场方向夹角较大(接近90°),激波面与磁场垂直,粒子通过交叉激波面加速。(激波法线):激波面的垂直方向,指向激波传播的方向。:研究激波在行星周围的对称性。

2025-03-24 11:42:44 328

原创 上游平均等离子体 β(Mean upstream plasma beta)

等离子体贝塔值(β)定义为等离子体的热压力(由粒子热运动产生)与磁压力(由磁场产生)的比值,数学表达式为:其中,n 为粒子数密度,k_B​ 为玻尔兹曼常数,T 为等离子体温度,B 为磁场强度,μ_0​ 为真空磁导率。​。

2025-03-24 11:37:10 942

原创 平均上游离子密度(Mean upstream ion density)

地球磁层与太阳风相互作用时,弓激波上游的太阳风离子密度(通常为1–10 cm⁻³)是计算激波压缩比(下游密度/上游密度)的关键参数。是空间物理和等离子体研究中描述激波(如地球弓激波)上游区域离子数密度的关键参数,通常用于分析太阳风与行星磁层相互作用中的粒子分布及能量传输。若激波下游(磁鞘)密度为20 cm⁻³,上游密度为5 cm⁻³,则压缩比为 205=4520​=4,表明激波将等离子体压缩了4倍。(离子密度):单位体积内离子的数量(单位:cm⁻³ 或 m⁻³),表征等离子体的物质密度。

2025-03-24 11:33:24 213

原创 Mean upstream δB/B0

是一个用于描述特定物理环境中磁场波动强度的无量纲参数,常见于空间物理或等离子体体物理研究(如行星弓激波、太阳风与磁层相互作用等)。(上游):在激波(如地球弓激波)研究中,指激波前方的未受扰动区域(例如太阳风在撞击磁层前的区域)。:地球弓激波上游的太阳风中,磁场波动(δB)可能由太阳风湍流或激波前兆效应引起。表示在激波上游区域,磁场波动的平均值与背景磁场的比值。:磁场波动相对于背景场的比值,用于量化波动的相对大小。:表示磁场的波动量(即偏离背景值的部分)。:背景磁场的强度(基准值)。

2025-03-24 11:27:34 118

原创 SaMam:任意图像风格转移的风格感知状态空间模型 CVPR 2025

Abstractwith ​, termed ​, ​, and ​and ​. ​and ​在中起着至关重要的作用,以获得。然而,现有的​(如CNNs和Transformers)在实现时面临。最近,​,特别是改进的变体,在方面展现出巨大潜力,其具有,为解决上述困境提供了途径。本文开发了一个,称为。具体来说,​被设计用于高效提取。此外,​被开发用于灵活适应多种风格。为了解决现有SSM的和问题,本文引入了和。​表明,。, ​, and ​旨在捕捉以生成。

2025-03-23 07:47:38 932

原创 视觉基础模型的可解释性综述 2025

arxiv.org随着人工智能系统日益融入日常生活,​可解释性领域引起了广泛关注。这一趋势尤其受到现代AI模型的复杂性及其决策过程的驱动。​基础模型的出现,以其广泛的泛化能力和新兴用途为特征,进一步复杂化了这一领域。​基础模型在可解释性领域中占据了一个模棱两可的位置:其复杂性使其本质上难以解释,但它们越来越多地被用作构建可解释模型的工具。在本综述中,探讨了基础模型与可解释人工智能(XAI)​在视觉领域的交叉点。首先汇编了连接这两个领域的综合文献集。接着,根据这些工作的架构特征对其进行分类。然后,讨论了当前研

2025-03-22 11:02:46 817

原创 高斯掩码自编码器: Gaussian Masked Autoencoders | 单位:Meta

本文探讨了结合高斯泼溅(Gaussian Splatting)的掩码自编码器(MAE)。 尽管基于重建的自监督学习框架(如MAE)能够学习良好的语义抽象,但其并未针对显式空间感知能力进行训练。本文提出的方法名为高斯掩码自编码器(GMAE),旨在联合学习语义抽象与空间理解。 与MAE类似,GMAE通过像素空间端到端重建图像,但更进一步引入了基于3D高斯的中间表示,并通过泼溅(splatting)技术渲染图像。 作者证明,GMAE能够在保持MAE自监督表示质量的高层语义的同时,实现多种空间理解的零样本学习能力(

2025-03-22 05:24:44 597

原创 空间物理学中的原位激波(In-situ Shock)

是太阳物理学和空间天气研究中的一个重要概念,指航天器在行星际空间或地球附近直接探测到的激波现象。与通过遥感手段间接推断的激波不同,原位激波的观测依赖于航天器携带的仪器在激波实际发生的位置进行实时测量,从而获取高精度的等离子体参数、磁场变化及粒子加速特征。

2025-03-21 15:26:24 228

原创 SERPENTINE 项目数据中心 介绍

Solar Orbiter 高能粒子探测器(EPD)三级数据将由阿尔卡拉大学(UAH)团队与仪器团队协调生产,BepiColombo 太阳强度 X 射线和粒子光谱仪(SIXS)三级数据将由仪器首席研究员机构(赫尔辛基大学和图尔库大学)提供。是欧洲空间局(ESA)与美国国家航空航天局(NASA)合作的一项太阳探测任务,旨在近距离研究太阳及其对太阳系的影响。模型的观测数据,将推导出基本的日冕激波参数(物理和几何参数)。观测到的历史多航天器太阳高能粒子(SEP)事件以及地球附近的辅助观测数据(例如 ​。

2025-03-21 14:16:42 768

原创 在视觉上揭开 Mamba 的神秘面纱:线性注意力视角(黄高) NeurIPS 2024

本文揭示了 Mamba 模型与线性注意力 Transformer 之间存在惊人的相似性,而后者在实践中通常表现不如传统的 Transformer。通过探索高效的 Mamba 与表现欠佳的线性注意力 Transformer 之间的相似性和差异,本文提供了全面的分析,以揭示 Mamba 成功的关键因素。本文提出了一种Mamba 启发的线性注意力(MILA)模型,将这两个关键设计的优点融入线性注意力中。所得到的模型在图像分类和高分辨率密集预测任务中均优于各种视觉 Mamba 模型,同时具备可并行计算和快速推理速度

2025-03-21 11:29:32 371

李飞飞团队《2024年人工智能指数报告》《Artificial Intelligence Index Report 2024》

李飞飞联合领导的斯坦福大学以人为本人工智能研究所(Stanford HAI)发布了《2024 年人工智能指数报告》,全面追踪了全球人工智能的发展趋势,更总结了十大核心趋势!这是该团队发布的最为详尽的报告,且其发布时机恰逢AI对社会的深远影响日益显现的重要时刻!强烈推荐阅读学习! 【十大主要趋势】 1、人工智能在某些任务上胜过人类,但并非在所有任务上。 2、产业界继续主导人工智能前沿研究。 3、前沿模型变得更加昂贵。 4、美国领先中国、欧盟和英国,成为顶级人工智能模型的主要开发国家。 5、目前严重缺乏对大语言模型负责任的可靠和标准化评估。 6、生成式人工智能投资飙升。 7、人工智能使工人更有效率,并带来更高质量的工作。 8、人工智能崛起推动科学进步的速度愈发迅猛。 9、美国的人工智能法规数量呈现出急剧增加的趋势。 10、在全球范围内,公众对人工智能的潜在影响有了更为深刻的认识,同时伴随着日益增长的紧张情绪。【描述来自CVer https://wx.zsxq.com/dweb2/index/topic_detail/4844518514581258】

2024-08-12

腾讯研究院《工业大模型应用报告》 2024年3月

腾讯研究院发布的《工业大模型应用报告》,主要分析了大模型在工业智能化发展中的应用现状、机遇、挑战及未来展望,不论是以后离开学校工作还是留在学校科研,都值得一看以指导工作和研究方向。 大模型为工业智能化发展带来新机遇 大模型与小模型在工业领域的分布态势 工业大模型的构建模式 大模型在工业全链条的应用 工业大模型的挑战与展望

2024-08-12

GitHub上传方法.docx

详细介绍如何上传GitHub项目! 1. 先到github 个人网页上建立新的 2. 进入要上传的文件夹内,右键,选择 Git Bash Here 然后,出现如下界面。输入: git clone [刚才建立的新网址] 3. 这个时候,就建立本地 git 链接文件了(红框标记),这个文件可以理解为github与本地链接点。然后把所有要上传的文件拖进去。

2020-07-26

synset_words.txt

最新最权威synset_words.txt,可用于OpenCV dnn模块caffe模型对图片进行分类,识别,做迁移学习,强化学习使用的标签参考。 放在与classification_demo.m同一个文件夹下。

2018-05-25

bvlc_reference_caffenet.caffemodel

bvlc_reference_caffenet.caffemodel 是 matlab 调用 caffe 时需要的 model 文件。放到caffe-master\models\bvlc_reference_caffenet文件夹下。

2018-05-25

去雾算法 dehazing 最新顶级会议和期刊论文打包下载(08-14年)

本文档涵盖了去雾算法在2008-2014年间的顶级论文,这些论文包括在17、18年顶级期刊和会议(CVPR,ECCV,ICCV)上的论文。本文档没有包含何凯明的DCP和导向滤波器论文。这两篇论文在网上比较好下载。

2018-03-19

去雾算法 dehazing 最新顶级会议和期刊论文打包下载(15-16年)

本文档涵盖了去雾算法在 2015-2016 年间顶级论文,这些论文包括在15、16年顶级期刊和会议(CVPR,ECCV,ICCV)上的论文。

2018-03-19

去雾算法 dehazing 最新顶级会议和期刊论文打包下载(17-18年)

本文档涵盖了2017-2018(3月之前)几乎全部的顶级论文,这些论文包括在17、18年顶级期刊和会议(CVPR,ECCV,ICCV)上的论文,也有许多是最新提出的基于深度学习模型的去雾算法,在arXiv上共享但还未发表。

2018-03-19

宽度学习 Broad Learning System MATLAB代码(2):NORB实践

陈俊龙教授团队“Broad Learning System: An Effective and Efficient Incremental Learning System Without the Need for Deep Architecture”的中文综述,原文将在IEEE Transactions on Neural Networks and Learning Systems, Vol. 29, Issue 1, 2018

2018-03-19

A Probabilistic Collaborative Representation based Approach for

本资源是 2016 CVPR 文章的代码. 文章原文题目是: A Probabilistic Collaborative Representation based Approach for Pattern Classification

2018-01-11

17CVPR_CODE_Learning Dynamic Guidance for Depth Image Enhancement

17CVPR_CODE_Learning Dynamic Guidance for Depth Image Enhancement 17 cvpr 代码

2018-01-11

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB .pdf

Recent research on deep convolutional neural networks (CNNs) has focused primarily on improving accuracy. For a given accuracy level, it is typically possible to identify multiple CNN architectures that achieve that accuracy level. With equivalent accuracy, smaller CNN architectures offer at least three advantages: (1) Smaller CNNs require less communication across servers during distributed training. (2) Smaller CNNs require less bandwidth to export a new model from the cloud to an autonomous car. (3) Smaller CNNs are more feasible to deploy on FPGAs and other hardware with limited memory.

2017-12-20

Wasserstein Auto-Encoders 【pdf】

We propose the Wasserstein Auto-Encoder (WAE)|a new algorithm for building a generative model of the data distribution. WAE minimizes a penalized form of the Wasserstein distance between the model distribution and the target distribution, which leads to a dierent regularizer than the one used by the Variational Auto-Encoder (VAE) [1]. This regularizer encourages the encoded training distribution to match the prior. We compare our algorithm with several other techniques and show that it is a generalization of adversarial auto-encoders (AAE) [2]. Our experiments show that WAE shares many of the properties of VAEs (stable training, encoder-decoder architecture, nice latent manifold structure) while generating samples of better quality, as measured by the FID score.

2017-12-20

基于小波变换的图像增强算法.pdf

结合小波变换中相关系数理论,提出了一种基于小波变换的图像增强算法,该算法先区分小波域中由细节及噪声产生的高频系数,对由细节产生的信息进行增强,对噪声进行抑制·解决了通常算法中增强细节信号的同时也放大了噪声这个问题·实验表明,该算法在得到很好的图像增强的同时,能很好地抑制噪声,对于多噪声环境下的弱细节信号能达到很好的增强效果·

2014-07-16

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除