利用coverage统计Python代码覆盖率

转载 2015年07月09日 11:18:51

coverage联合nosetests做单测覆盖率:

nosetests --with-coverage --cover-html

命令1 :

coverage help

命令2:启动命令,后面参数为原程序启动参数
Python es_proxyapp.py 8999
coverage run es_proxyapp.py 8999
coverage run start.py args1 args2... 

命令3:显示覆盖率报告
coverage report
coverage report -m
coverage report -m my_program1.py  my_program2.py

命令4:生成HTML覆盖率报告
coverage html -d coverage_html


http://www.cnblogs.com/coderzh/archive/2009/12/01/pythoncoverage.html

官网命令行介绍:

http://nedbatchelder.com/code/coverage/cmd.html

百度介绍:

http://qa.baidu.com/blog/?p=146

Coverage has a number of commands which determine the action performed:

  • run – Run a Python program and collect execution data.
  • report – Report coverage results.
  • html – Produce annotated HTML listings with coverage results.
  • xml – Produce an XML report with coverage results.
  • annotate – Annotate source files with coverage results.
  • erase – Erase previously collected coverage data.
  • combine – Combine together a number of data files.
  • debug – Get diagnostic information.







相关文章推荐

使用Coverage分析Python web项目的代码覆盖率

 http://www.thinksaas.cn/group/topic/396057/ 用Python启动的web服务可以方便地使用Coverage分析其覆盖率,假设一个web服务,...
  • zm_21
  • zm_21
  • 2016-03-15 10:34
  • 806

verification technologies---code coverage 代码覆盖率

Code coverage is a technology that can identify what code has been(and more importantly not been) ex...

python 代码覆盖率统计

初步用了下python的coverage,非常方便,可以去官网下载使用:http://nedbatchelder.com/code/coverage/ 而且命令很简单,就那么几个: [ro...

使用coverage工具统计python单元测试覆盖率

Coverage简介 Coverage是一种用于统计Python代码覆盖率的工具,通过它可以检测测试代码对被测代码的覆盖率如何。Coverage支持分支覆盖率统计,可以生成HTML/XML报告。 ...

emma java统计代码覆盖率

  • 2011-12-07 15:11
  • 324KB
  • 下载

统计 Android 单元测试代码覆盖率

为程序编写单元测试对于我一个境界比较low的程序员来说,简直就是噩梦,但是不得承认,为项目写测试是个非常正确、必要的工作,尤其是当项目越来越大,代码越来越多,测试代码可以及时检查出一次改动所带来的影响...

AndroidStudio中使用Jacoco统计Android应用程序代码覆盖率

最近在做针对Android应用程序代码覆盖率的统计工作,刚开始从论文中看到大多数研究者采用emma这个工具来统计Android应用程序代码覆盖率,但是我看过一些资料后发现emma只能对eclipse中...
  • LZN51
  • LZN51
  • 2017-05-09 20:50
  • 784
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)