自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

水花的博客

每天进步一点点

  • 博客(107)
  • 收藏
  • 关注

原创 Jetson NX Xavier基本配置

对于刚接触Nvidia开发板的同志来说,有很多需要了解的东西,博主根据平时用到的配置,简单做了总结,比较偏向个人化设置,但有些东西都会用到的,例如:安装jtop、设置免密码输入、更换镜像源等。

2023-03-15 16:30:28 223

原创 Jetson NX Xavier 编译opencv4.4(cuda版)

通常来说,编译opencv少则半天,多则一天,甚至几天都搞不好。所以,在浏览信息时,意外找到一个Nvidia内部团队已经编译好的opencv-cuda4.5,则能为你省时省力。

2023-03-15 15:43:40 257

原创 Python源码到内存管理机制(笔记版)

Python的内存管理机制是基于引用计数和垃圾回收的。引用计数是一种计算对象引用数目的机制,当对象引用数为0时,Python的垃圾回收机制将自动销毁该对象释放内存。Python还有一种针对循环引用的垃圾回收机制,称为分代垃圾回收。该机制将对象分为不同的代,每一代具有不同的存活时间和回收机制,从而提高了垃圾回收的效率。

2023-03-15 15:00:50 186

原创 Jetson NX Xavier 桌面推流至rtsp

每次项目组给你提出一个需求,要你实现xx功能时,若没做过,定会是抓耳挠腮。这桌面推流就是其中一个,我曾经踩过坑,也泪过,记此文章,望后来人能少走些弯路。这桌面推流主要分为两大块:搭建推流服务器、Jetson硬编码推流。

2023-03-13 18:18:50 134

原创 【水花的2021年度总结】

水花的2021年度总结

2022-01-06 15:17:09 383 2

原创 【用循环合并“猴子在苹果树下打架”文本并打印】

目录前置知识最终的结果前置知识list-列表dict-字典for循环join与字符串如果基础知识不太懂得,可以访问菜鸟教程,学习最快捷得方式就是哪里不会弄懂哪里。最终的结果if __name__ == "__main__": # python列表里面嵌套字典 # 字典通过键值对存储 tokens = [{"key": "猴子在"}, {"key": "苹果树下"}, {"key": "打架"}] # 定义一个result列表,注意:只有列表才有

2021-10-09 14:06:36 747 5

原创 【一步操作,GitHub项目实时更新star、watch、fork】

你是否还在为怎么得到GitHub开源项目的实时Star、Watch、Frok数量而挠头皮,一个网址,几步简单的操作就可以实现。

2021-09-29 11:08:48 497

原创 【Python存储和调用json文件】

json.dumps()格式化数据,json.load()导入json文件。模块json让你能够将简单的Python数据结构转存到文件中,并在程序再次运行时加载该文件中的数据。

2021-09-27 18:10:40 697

原创 林子雨大数据技术原理总结

目录*资料集结地下载专区学习路线大数据专栏Java学习总结Ubuntu16.04 配置SSH无密码登录常用命令1.vim保存退出 wq!不保存退出 q!定位到任意行 :行数2.rmzookeeper安装例子1.hadoop1.1本地安装1.2Hadoop单机配置(非分布式)1.3伪分布式运行mapreduce1.3.1配置 core-site.xml1.3.2配置 hdfs-site.xml1.3.3配置 yarn-site.xml1.3.4配置 mapred-site.xml1.3.5本地主机名和Hado

2021-09-06 17:36:25 864 1

原创 【BI学习心得23-车辆路径规划问题2】

目录多路径规划多路径规划

2021-06-27 21:31:00 845 1

原创 【BI学习作业23-车辆路径规划问题】

目录1.思考题2.编程题2.1多辆车的路径规划 VRP1.思考题2.编程题2.1多辆车的路径规划 VRP条件:经过中国33个城市,一共4辆车,每辆车最大行驶10000公里目标:使得每辆车的行驶里程数更接近需要注意:在VRP问题中,路径上给点赋的index和点实际的index不一样,需要使用IndexToNode方法进行转换才能得到实际的index任务:完成带有约束条件的VRP问题结果正确import pandas as pdfrom ortools.constraint_sol

2021-06-25 19:11:32 459

原创 【BI学习心得22-车辆路径规划问题】

目录遗传算法存在的问题2.scikit-opt——SA(模拟退火)2.1SA求函数最值2.1.1定义问题2.1.2执行SA2.1.3绘制结果2.2SA解决TSP问题2.2.1定义问题2.2.2给TSP做SA2.2.3绘制结果2.2.4绘制动画2.3完整代码和数据参考资料遗传算法存在的问题1.在选择的过程中,选择多少次,会不会造成种群的减少,选到重复的怎么办?选择次数没有限制,即然是选择肯定就会有没选上的,因此会造成种群数量减少,选到重复的个体舍弃重新选择。建议选择的次数少于种群数量,因为不重复,

2021-06-13 19:03:45 1289 1

原创 【github项目创建、代码上传与审查】

在GitHub上开源项目或者记录自己的学习心得成了一个程序员会做的事情,其中如何对我们已写好的demo利用GtiHub和Pycharm进行代码审查呢?

2021-06-11 18:07:46 584 3

原创 【BI学习作业22-车辆路径规划问题】

目录1.编程题1.1自动钻孔机路线规划参考资料1.编程题1.1自动钻孔机路线规划目标:电路板上钻孔,请你找到钻头在板上的最短路线描述:Drilling.csv 包含了平面中的 280 个点(x, y)"""Simple travelling salesman problem on a circuit board.""" from __future__ import print_functionimport mathfrom ortools.constraint_solver impor

2021-06-07 11:01:33 221

原创 【BI学习作业21-常见规划问题2】

目录1.编程题1.1Santa的接待安排1.编程题1.1Santa的接待安排圣诞节前100天,Santa开放了workshop,欢迎以家庭单位的参观,如何更合理的安排这些家庭参观?每个家庭有10个选择choice0-9,数字代表了距离圣诞节的天数,比如 1代表12月24日,每个家庭必须并且只安排一次参观。家庭数量 5000,即family_id 为[0, 4999],每天访问的人数需要在125-300人。任务:Santa的接待安排为了更合理的计算Santa的安排能力,我们使用preferen

2021-06-06 19:42:36 128

原创 【BI学习心得21-常见规划问题2】

目录1.旅行商问题2.车辆路径问题(Vehicle Routing Problem,VRP)2.1问题类型2.2车辆路径问题的方法2.3求解方法3.遗传算法1.旅行商问题Travelling Salesman Problem,一个旅行商想去拜访若干城市,然后回到他的出发地,给定各个城市之间所需的旅行时间后,怎样计划他的路线,使得他能对每个城市恰好进行一次访问,而且总时间最短。2.车辆路径问题(Vehicle Routing Problem,VRP)车辆路线问题(VRP)最早是由Dantzig和R

2021-06-06 19:40:42 328

原创 【BI学习心得20-常见规划问题1】

目录1.常见规划问题2.线性规划2.1问题求解3.规划工具1.常见规划问题2.线性规划2.1问题求解Step1,列出约束条件及目标函数Step2,画出约束条件所表示的可行域Step3,在可行域内求目标函数的最优解及最优值3.规划工具...

2021-05-30 19:49:32 133

原创 【BI学习作业20-常见的规划问题1】

目录1.思考题1.1常见的规划问题都包括哪些?1.2常用的规划工具包都有哪些?1.3TSP与VRP问题的关系是怎样的?2.编程题2.1农田承包收益最大化问题1.思考题1.1常见的规划问题都包括哪些?要求:简要说明常见的规划问题规划问题:1.LP:Linear Programming 线性规划研究线性约束条件下线性目标函数的极值问题2.ILP:Integer Linear Programming 整数线性规划全部决策变量必须为整数3.MIP:Mixed Integer Pr

2021-05-30 19:45:53 436

原创 【BI学习心得19-逻辑回归与采购决策】

目录1.逻辑回归模型2.物资分类3.贝叶斯优化4.总结参考资料1.逻辑回归模型2.物资分类3.贝叶斯优化假设一组超参数组合是X=x1,x2,…,xn(xn表示某一个超参数的值),不同超参数会得到不同效果,贝叶斯优化假设超参数与需要优化的损失函数存在一个函数关系4.总结参考资料...

2021-05-23 20:08:23 214

原创 【BI学习作业19-逻辑回归与采购决策】

目录1.思考题1.1逻辑回归的假设条件是怎样的?1.2逻辑回归的损失函数是怎样的?1.3逻辑回归如何进行分类?1.4为什么在训练中需要将高度相关的特征去掉?2.编程题2.1基于评分卡的风控模型开发参考资料1.思考题1.1逻辑回归的假设条件是怎样的?简要说明逻辑回归的假设条件1.2逻辑回归的损失函数是怎样的?简要说明逻辑回归的损失函数1.3逻辑回归如何进行分类?简要说明逻辑回归是如何进行分类的1.4为什么在训练中需要将高度相关的特征去掉?简要说明为什么要去掉相关度高的特征

2021-05-23 20:06:19 157

原创 【BI学习作业18-评分卡模型】

目录1.思考题1.1都有哪些模型具有特征可解释性?1.2评分卡模型中的A卡、B卡、C卡分别指的是什么?1.3评分卡模型的开发流程是怎样的?1.4变量分箱都有哪些方法?2.编程题2.1基于评分卡的风控模型开发1.思考题1.1都有哪些模型具有特征可解释性?1.2评分卡模型中的A卡、B卡、C卡分别指的是什么?1.3评分卡模型的开发流程是怎样的?1.4变量分箱都有哪些方法?2.编程题2.1基于评分卡的风控模型开发数据集地址:https://www.kaggle.com/c/GiveMeSomeC

2021-05-16 19:36:26 285

原创 【BI学习心得18-评分卡模型】

目录写在前面的话参考资料写在前面的话参考资料评分卡模型

2021-05-16 15:50:32 682

原创 【BI学习心得17-智能供应链与评分卡模型】

目录写在前面的话1.智能供应链的特征分析1.1RFM指标1.1.1RFM指标使用场景1.1.2RFM指标计算1.2分位数(quantile)1.2.1分位数的计算1.3LDA写在前面的话我不知道你有没有这种感受,你知道要进行数据探索,特征工程,但是你还是没有点点感觉,在你确定一个,然后魔改,分数上去了。数据处理就像是一场‘寻宝之旅’,不经意间的Idea带来不一样的结果,有种小小的成就感。1.智能供应链的特征分析1.1RFM指标Recency,最近一次消费时间间隔Frequency,消费频率

2021-04-24 23:40:33 211

原创 【BI学习作业17-智能供应链与评分卡模型】

目录1.编程题1.1二手车价格预测1.编程题1.1二手车价格预测数据地址:https://tianchi.aliyun.com/competition/entrance/231784/introduction目标:给你一辆车的各个属性(除了price字段),预测它的价格要求:使用神经网络、xgb、lgb等机器学习算法来完成预测FieldDescriptionSaleID交易ID,唯一编码name汽车交易名称,已脱敏regDate汽车注册日

2021-04-24 23:37:01 201 1

原创 【一点推荐系统方面的学习总结】

内容目录01-商业智能与推荐系统02-挖掘数据中的关联规则03-用户画像04-ALS算法与推荐系统05-SVD矩阵分解与基于内容的推荐06-因子分解机, libFM与基于邻域的协同过滤07-CTR预估算法与基于流行度的推荐08-用户购买预测与基于流行度的推荐09-时间序列分析10-时间序列实战11-资金流入流出预测12-个性化推荐与金融数据分析13-淘宝定向广告演化与天猫用户复购预测14-AlphaGo Zero实战15-数据分析思维16-模型融合与供应链预测01-商业智能与推荐系统【BI学习作业0

2021-04-23 16:53:03 452 1

原创 【python正则匹配字符串的数字和中文】

记录自己平常解决的问题1.匹配数字1.1提取字符串中所有的数字2.匹配中文2.1匹配字符串中的第一个连续的中文片段2.2匹配字符串中的所有中文字符2.3匹配字符串中的所有中文字符并一起输出正则表达式正则函数用处‘[^(0-9)]’re.sub提取字符串中所有数字‘[\u4e00-\u9fa5]*’re.search匹配字符中的第一个连续的中文片段‘[\u4e00-\u9fa5]’re.findall匹配字符串中的所有中文字符‘[\u4e00-\u9f

2021-04-23 11:03:09 973

原创 【BI学习心得16-模型融合与供应链预测】

目录1. 回归分析算法2. 模型融合原理3.分类任务中的Voting策略4.回归分析中的模型融合参考资料1. 回归分析算法2. 模型融合原理3.分类任务中的Voting策略4.回归分析中的模型融合参考资料

2021-04-18 18:42:21 309

原创 【BI学习作业16-模型融合与供应链预测】

目录1.思考题1.1有哪些提分(减少MAE)的方式?1.2鸢尾花模型融合1.3采用nerual network进行价格预测1.4Model的特征可解释性测2.编程题2.1二手车价格预测1.思考题1.1有哪些提分(减少MAE)的方式?时间类型数据(regDate, creatDate)模型融合,使用XGBoost,LightGBM增加新的特征,对brand进行统计brand_amount, brand_price_max, brand_price_min, brand_price_med

2021-04-18 18:39:52 140

原创 【reduce_mem_usage函数,减少数据的内存】

写在前面的话对于程序猿来说,我们会追求性能,效率。不例外地,记录下,用pandas读取csv,减少读取内存的一个常见方法。import pandas as pddef reduce_mem_usage(df, verbose=True): numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] start_mem = df.memory_usage().sum() / 1024**2

2021-03-25 17:59:21 879

原创 【BI学习心得15-数据分析思维】

目录1.数据分析2.数据分析的问题解决2.1在做数据分析之前,我们需要思考什么?2.2明确大目标后(比如提升用户购买转化)该如何工作呢?2.3提一个好的问题,帮你明确目标是什么?2.4了解数据分析的思维方法,制定具体的报告/产品方案2.5掌握技术工具3.数据分析的目标1.数据分析随着大数据的来临,每天都会产生海量的数据。面对如此庞大的数据,如何从其中提取有用的信息?广义的数据分析,包括了多个维度:数据统计、数据挖掘、机器学习、商业逻辑。从数据(杂乱无章)中汲取有用的信息的方法和工具都叫数据分析,比

2021-03-21 23:01:42 1037

原创 【BI学习作业15-数据分析思维】

目录1.思考题1.1新零售中的“人、货、场”分别指的是什么?1.2AIPL与传统的品牌资产评估有何区别?1.2.1AIPL1.2.2品牌评估1.2.3方法总结1.3请列举一例生活工作中存在的帕累托法则1.4请简述GBDT与XGBoost的区别?1.5如何处理神经网络中的过拟合问题?1.5.1简化模型1.5.2早停1.5.3使用数据增强1.5.4使用正则化1.5.5使用丢弃法(Dropouts)2.编程题2.1智能供应链分析1.思考题1.1新零售中的“人、货、场”分别指的是什么?对的人:用户的画像(

2021-03-21 22:42:29 809

原创 【强化学习原理剖析】

目录写在前面的话1.强化学习1.1强化学习的应用1.2强化学习与机器学习1.3基本概念1.3.1奖励(Reward)1.3.2序列决策(Sequential Decision Making)1.3.3个体与环境的交互(Agent & Environment)1.3.4Markov状态1.3.4.1马尔可夫属性(Markov Property)1.4强化学习Agent1.5策略网络1.5.1价值网络(数值网络)1.5.2策略网络与价值网络1.6QLearning1.6.1QLearning的使用1.7

2021-03-17 15:52:26 916

原创 【BI学习心得14-AlphaGo Zero实战】

目录写在前面的话写在前面的话文章正在酝酿中,请耐心等待!

2021-03-14 21:27:19 224

原创 【BI学习作业14-AlphaGo Zero实战】

目录写在前面的话写在前面的话文章正在酝酿中,请耐心等待!

2021-03-14 21:25:22 83

原创 【BI学习心得13-淘宝定向广告演化与天猫用户复购预测】

目录写在前面的话写在前面的话

2021-02-28 15:31:53 498

原创 【BI学习作业13-淘宝定向广告演化与天猫用户复购预测】

目录写在前面的话写在前面的话

2021-02-28 15:29:41 403 3

原创 【word2vec的那些问题】

内容目录写在前面的话1. 什么是 Word2vec?2.Skip-gram 和 CBOW 模型2.1Skip-gram 和 CBOW 的简单情形2.2Skip-gram 更一般的情形2.3 CBOW 更一般的情形3.Word2vec 的训练trick4.扩展5.你问我答6.什么是embedding?(王喆版)6.1word2vec用的是输入是输出矩阵?6.2深度学习因为表达能力强,特征过于稀疏的样本可能造成过拟合?6.3item2vec 和 word2vec 两者的区别6.4推荐资料写在前面的话翻看

2021-02-20 11:35:17 356

原创 【BI学习心得12-个性化推荐与金融数据分析】

内容目录写在前面的话1.Airbnb个性化推荐1.1Airbnb个性化推荐场景1.2List Embedding1.3Word2Vec的使用1.4List Embedding的评估1.5List Embedding的冷启动1.6基于List Embedding的相似房源推荐1.7User Type Embedding与Listing Type Embedding1.8基于Embedding的实时个性化搜索2.Fintech数据分析2.1Project A:信用卡违约预测2.2Project B:信用卡欺诈预

2021-02-06 20:07:01 360

原创 【BI学习作业12-个性化推荐与金融数据分析】

内容目录1.思考题1.1P2P租车2.编程题2.1信用卡违约率检测2.2信用卡欺诈分析2.2.1分析代码1.思考题1.1P2P租车阐述相似车型,搜索排序的设计方法可能的embedding策略这里是引用2.编程题2.1信用卡违约率检测数据集地址:https://www.kaggle.com/uciml/default-of-credit-card-clients-dataset对信用卡使用数据进行建模,预测用户是否下个月产生违约 => 分类问题机器学习算法有很多,比

2021-02-06 20:02:55 397

原创 【BI学习心得11-资金流入流出预测】

内容目录背景背景

2021-01-31 18:41:13 251

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除