EOJ 1816 判断图连通的三种方法——dfs,bfs,并查集

这篇博客介绍了如何判断无向图是否连通的三种方法,包括使用深度优先搜索(DFS)、广度优先搜索(BFS)以及并查集。并查集方法在处理大规模数据时效率较高,而DFS和BFS提供了遍历图的直观方式。文章给出了每种方法的C++代码实现,并附带了样例输入和输出。
摘要由CSDN通过智能技术生成

题目:eoj1816

Description

如果无向图G每对顶点v和w都有从v到w的路径,那么称无向图G是连通的。现在给定一张无向图,判断它是否是连通的。

Input

第一行有2个整数n和m(0 < n,m < 1000000), 接下来m行每行有2个整数u,v (1<=u,v<=n)表示u和v有边连接。

Output

如果无向图是连通的输出yes,否则输出no

Sample Input

4 6
1 2
2 3
1 3
4 1
2 4
4 3

Sample Output

yes


Hint

图的遍历算法


 

题目分析:判断图是否连通,可用dfs和bfs遍历图算法,注意点数目较多,又是稀疏图的话,最后使用邻接表的方法存储。另外推荐采用的是并查集的方法。初始化时将每个节点看作一个集合,则每给出一条边即把两个集合合并。最后遍历所有点,有几个集合便有几个连通分量,若只有一个集合说明图连通。并查集方法通常情况下时间效率较高,还能判断一个图是否有回路,在kruskal算法中也可以使用。

下分别给出三种方法的代码。

 

版本一:使用并查集的方法

#include <iostream>

#include <cstdio>

#include <cstring>

#include <cmath>

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值