机器学习
文章平均质量分 70
方品
fangpin.github.io
展开
-
tensorflow MNIST机器学习入门
tensorflow MNIST机器学习入门MNIST数据集MNIST数据集的官网是Yann LeCun’s website。在这里,我们提供了一份python源代码用于自动下载和安装这个数据集。你可以下载这份代码,然后用下面的代码导入到你的项目里面,也可以直接复制粘贴到你的代码文件里面。import input_datamnist = input_data.read_data_sets("MNI原创 2016-06-30 14:48:46 · 9853 阅读 · 4 评论 -
word2vec原理及实现
word2vec,字词的向量空间模型依靠将语意相近的词语聚在一起来提高自然语言处理的表现。原创 2016-08-13 18:24:04 · 25334 阅读 · 4 评论 -
mac 安装tensorflow
mac 安装tensorflow安装pip$ sudo easy_install pip # 如果还没有安装 pip安装virtualenv 创建一个隔离的容器sudo pip install --upgrade virtualenv接下来, 建立一个全新的 virtualenv 环境. 为了将环境建在 ~/tensorflow 目录下, 执行:$ virtualenv --system-si原创 2016-06-27 19:58:22 · 1880 阅读 · 0 评论 -
tensorflow examples
mnist之于机器学习,便如同hello world之于程序语言。code本文主要是代码汇总,不涉及具体理论。主要内容如下:1)线性回归2)logistic回归3)人工神经网络4)cnn5)双端lstm6)模型的保存和加载7)其他word2vechttps://github.com/fangpin/daily_programs/blob/master/python/tensorflow/wor原创 2017-01-09 20:51:56 · 2792 阅读 · 0 评论 -
感知机
感知机的学习目标在于求出分离数据的线性超平面,它是一个线性分类器,是神经网络和SVM的基础。感知机的定义感知机是一个二分类模型,假设对于输入向量X,输出Y满足 (Y\in { 1,-1 }).则对输入作如下预测 y=f(x)=sign(w*x+b)其中 (sign(x)) 为符号函数,(x \geq 0) 时返回1,否则返回-1. w叫权值向量,b为偏置。几何含义使用线性超平面w\*x+b原创 2017-01-09 20:55:12 · 452 阅读 · 0 评论 -
朴素贝叶斯
朴素贝叶斯是基于贝叶斯定理和假设特征条件独立的分类方法。贝叶斯定理 (p(y|x)=\frac{p(x,y)}{p(x)}=\frac{p(y)*p(x|y)}{\sum_{y}{}p(y)*p(x|y)})条件独立 (p(X=x|Y=c_k)=\prod_{j=1}^{n}p(X^j=x^j|Y=c_k))朴素贝叶斯 (y=\arg \max_{c_k} \frac{p(Y=c_原创 2017-01-09 20:59:17 · 728 阅读 · 0 评论 -
k近邻
K近邻是一种惰性分类算法,它不具有显示的学习过程,实际是使用数据集对空间进行划分来进行分类。算法有三要素:距离度量,k的选择,分类决策规则距离度量距离反应实例间的相似度。可以使用余弦距离或者 Minkowski 距离。cos distance实例 (x^1) 和 (x^2) 的 cos distance (L(x^1,x^2)=\frac{x^1*x^2}{|x^1||x^2|})Minko原创 2017-01-09 21:03:34 · 770 阅读 · 0 评论