位图(bit-map)法是一种逻辑上很巧妙的描述集合的方法。
如果数据存在,则将set相对应的二进制位置1,否则置0。如集合S={2,4,1,5,12},它用位图描述就是 0110 1100 0000 1000,两个字节即可描述S,左边是低阶位。用bitset<16>存储的话就是{[15]、[14]、…[1]、[0]}={0001000000110110}。
用位图对集合进行描述后,就很方便进行集合的运算,如交、并和差。
下面来演示具体操作
集合S={1,2,4,5},集合T={2,5,8,10}
集合S的位图是 0110110000000000
集合T的位图是 0010010010100000
求S与T的交集即是 S&T=0010010000000000={2,5}
求S与T的并集即是 S|T=0110110010100000={1,2,4,5,8,10}
求S与T的差集即是 S&~T=(0110110000000000)&(1101101101011111)=0100100000000000={1,4}
以上例子的完整代码如下
#include<iostream>
#include<bitset>
using namespace std;
int main()
{
cout << "------位图法---by David---" << endl;
int S[] = { 1, 2, 4, 5 };
int T[] = { 2, 5, 8, 10 };
bitset<16> s, t;
s.reset();
t.reset();
int size_s, size_t, i;
size_s = sizeof(S) / sizeof(int);
size_t = sizeof(T) / sizeof(int);
cout << "集合S" << endl;
for (i = 0; i < size_s; i++)
{
cout << S[i] << " ";
s.set(S[i]);
}
cout << endl;
cout << "集合T" << endl;
for (i = 0; i < size_t; i++)
{
cout << T[i] << " " ;
t.set(T[i]);
}
cout << endl << endl;
//求交集
bitset<16> r1(s.to_ulong() & t.to_ulong());
//求并集
bitset<16> r2(s.to_ulong() | t.to_ulong());
//求差集
bitset<16> r3(s.to_ulong() & (~t.to_ulong()));
cout << "交集" << endl;
for (i = 0; i < 16; i++)
if (r1[i])
cout << i << " ";
cout << endl;
cout << "并集" << endl;
for (i = 0; i < 16; i++)
if (r2[i])
cout << i << " ";
cout << endl;
cout << "差集" << endl;
for (i = 0; i < 16; i++)
if (r3[i])
cout << i << " ";
cout << endl;
system("pause");
return 0;
}
目录: