向量空间模型(VSM)在文档相似度计算上的简单介绍

本文简要介绍了向量空间模型(VSM)在自然语言处理中的应用,特别是在文档相似度计算中的原理。通过词频表展示了如何使用Cosine相似度计算两个文档的相似度,并探讨了降维和倒排词频平滑(IDF)在提高效率和精度方面的作用。
摘要由CSDN通过智能技术生成

C#实现在:

http://blog.csdn.net/Felomeng/archive/2009/03/25/4023990.aspx

向量空间模型(VSM:Vector space model)是最常用的相似度计算模型,在自然语言处理中有着广泛的应用,这里简单介绍一下其在进行文档间相似度计算时的原理。

假设共有十个词:w1,w2,......,w10,而共有三篇文章,d1,d2和d3。统计所得的词频表(杜撰的,为了便于演示用法)如下:

 

w1

w2

w3

w4

w5

w6

w7

w8

w9

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值