【c++/euler】套圈法解有向图的欧拉回路

【参考】Matching_Euler_Tours_and_the_Chinese_Postman

[REPRESENTATION]The edge-pairingrepresentation【表示方法】边对表示法




【核心方法】

void Model::findEuler(int index, Node * node, Edge * edge)
{
	Node* node_a = node;
	Edge* edge_a = edge;

	while (true)
	{
		Node* node_b = edge_a->getInNode();
		Edge* edge_b = NULL;

		for (auto &tmp_e : node_b->getOutEdges())
		{
			if (!tmp_e->getMark())
			{
				edge_b = tmp_e;
				break;
			}
		}

		if (edge_b != NULL)
		{
			pair<Edge*, Edge*> tmp_pair;
			tmp_pair.first = edge_a;
			tmp_pair.second = edge_b;
			edge_a->setMark(true);
			edge_b->setMark(true);
			_edgePairs.push_back(tmp_pair);
		}
		else//if(edge_b==NULL)
		{
			break;
		}
		node_a = node_b;
		edge_a = edge_b;
	}

	if (index != -1)
	{
		pair<Edge*, Edge*> tmp_pair;
		tmp_pair.first = edge_a;
		tmp_pair.second = _edgePairs[index].second;
		_edgePairs.push_back(tmp_pair);

		_edgePairs[index].second = edge;
	}


	return;
}

【外层方法】

               if (nodes.size() > 0)
		{
			Node* node_0 = nodes.front();
			Edge* edge_0 = node_0->getOutEdges().front();

			findEuler(-1, node_0, edge_0);			

			for (auto &tmp_n : nodes)
			{
				for (auto &tmp_e : tmp_n->getOutEdges())
				{
					if (!tmp_e->getMark())
					{
						findEuler(getOneEdgePairIndex(tmp_n), tmp_n, tmp_e);//第一个参数为相交在tmp_n的一对边
					}
				}
			}
		}
		cout << "# Edge pairs:" << _edgePairs.size() << endl;
		cout << "# Finish find the euler route" << endl;

		/*output the route*/
		int pair_size = _edgePairs.size();
		bool * print_mark = new bool[pair_size];
		for (int i = 0; i < pair_size; ++i)
		{
			print_mark[i] = false;
		}

		Edge* cur_edge = _edgePairs[0].first;
		Edge* next_edge = _edgePairs[0].second;
		print_mark[0] = true;


		/*print*/
		cur_edge->print();

		while (next_edge != NULL)
		{
			/*print*/
			next_edge->print();
			
			cur_edge = next_edge;
			next_edge = NULL;

			/*find next edge*/
			for (int i = 1; i < pair_size; ++i)
			{
				if (!print_mark[i])
				{
					if (_edgePairs[i].first == cur_edge)
					{
						next_edge = _edgePairs[i].second;
						print_mark[i] = true;
						break;
					}
				}
			}
			
		}


构造欧拉回路的整数规划模型如下: 假设有一个无向图 $G=(V,E)$,其中 $V$ 表示节点集合,$E$ 表示边集合。设 $x_{ij}$ 表示从节点 $i$ 到节点 $j$ 的边的数量,$y_i$ 表示节点 $i$ 的度数。则整数规划模型可以表示为: $$ \begin{aligned} &\text{maximize} && 0\\ &\text{subject to} && \sum_{j\in V} x_{ij} - \sum_{j\in V} x_{ji} = 0, \quad \forall i\in V\\ &&& y_i = \sum_{j\in V} x_{ij}, \quad \forall i\in V\\ &&& \sum_{i,j\in V} x_{ij} = |E|\\ &&& x_{ij} \in \{0,1\}, \quad \forall i,j\in V\\ &&& y_i \in \{0,2\}, \quad \forall i\in V\\ \end{aligned} $$ 其中第一个约束条件表示节点 $i$ 的入度和出度相等,第二个约束条件表示节点 $i$ 的度数为其相邻边的数量之和,第三个约束条件表示所有边都必须被遍历,第四个和第五个约束条件是整数规划的限制条件。 Python 可以使用 PuLP 模块来实现整数规划求解: ```python from pulp import * def euler_circuit(edges): # 获取所有的节点 nodes = set() for a, b in edges: nodes.add(a) nodes.add(b) n = len(nodes) # 创建整数规划问题 prob = LpProblem('Euler Circuit', LpMaximize) # 创建变量 x = {} y = {} for i in nodes: for j in nodes: if i != j: x[i, j] = LpVariable(f'x_{i}_{j}', 0, 1, LpInteger) y[i] = LpVariable(f'y_{i}', 0, 2, LpInteger) # 创建目标函数 prob += 0 # 添加约束 for i in nodes: prob += lpSum(x[i, j] for j in nodes if i != j) - lpSum(x[j, i] for j in nodes if i != j) == 0 prob += y[i] == lpSum(x[i, j] for j in nodes if i != j) prob += lpSum(x[i, j] for i in nodes for j in nodes if i != j) == len(edges) # 求解 prob.solve() # 获取结果 circuit = [] for i in nodes: for j in nodes: if i != j and value(x[i, j]) == 1: circuit.append((i, j)) return circuit ``` 其中 `edges` 是一个由边组成的列表,每条边是一个二元组 `(a, b)` 表示从节点 `a` 到节点 `b` 有一条边。函数返回一个欧拉回路,也是一个由边组成的列表。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值