【Python】piecewise与curve_fit分段线性函数拟合

本文介绍了使用Python进行分段线性函数拟合的方法,特别是通过`scipy.optimize.curve_fit`库进行拟合。在实践中,由于数据特性,可能会遇到用3段函数拟合2段数据导致的OptimizeWarning。通过设置参数限制如`bounds`,可以改善拟合效果,但准确的设置需要根据具体数据调整。
摘要由CSDN通过智能技术生成

思路:确定所有的分割点(x*,y*)以及首尾的斜率(k*)

参考:两段的分段函数三段的分段函数scipy.optimize.curve_fit

代码:

from scipy import optimize
import matplotlib.pyplot as plt
import numpy as np


x = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ,11, 12, 13, 14, 15], dtype=float)
y = np.array([5, 7, 9, 11, 13, 15, 28.92, 42.81, 56.7, 70.59, 
	                 84.47, 98.36, 102.25, 106.14, 110.03])

# 一个输入序列,4个未知参数,2个分段函数
def piecewise_linear(x, x0, y0, k1, k2):
	# x<x0 ⇒ lambda x: k1*x + y0 - k1*x0
	# x>=x0 ⇒ lambda x: k2*x + y0 - k2*x0
    return np.piecewise(x, [x < x0, x >= x0], [lambda x:k1*x + y0-k1*x0, 
       
Python中,我们可以使用`scipy.optimize.curve_fit`函数或者`sklearn.linear_model.LinearRegression`来进行分段线性函数拟合。这里主要介绍如何使用`curve_fit`,它是`scipy.optimize`模块的一部分,适合于非线性模型的拟合,包括线性模型。 **使用`scipy.optimize.curve_fit`进行分段线性拟合** 1. **导入所需库**: ```python from scipy.optimize import curve_fit import numpy as np ``` 2. **假设我们有两个数据集,每个数据集对应一个线性部分**: ```python # 假设有两个线性部分的数据 x_data1 = np.array([...]) # 第一段数据的x值 y_data1 = np.array([...]) # 第一段数据的y值 x_data2 = np.array([...]) # 第二段数据的x值 y_data2 = np.array([...]) # 第二段数据的y值 ``` 3. **定义分段线性函数**: ```python def piecewise_linear(x, a1, b1, x_intercept, a2, b2): y1 = a1 * x + b1 y2 = a2 * (x - x_intercept) + b2 if x >= x_intercept else y1 return y2 ``` 4. **执行拟合**: ```python params_guess = [0.1, 1, x_data1, 0.2, 1] # 初始参数猜测 params, _ = curve_fit(piecewise_linear, np.concatenate((x_data1, x_data2)), np.concatenate((y_data1, y_data2)), p0=params_guess) ``` 5. **使用拟合结果**: ```python a1, b1, x_intercept, a2, b2 = params x_fit = np.linspace(min(x_data1), max(x_data2)) # 新的x值范围用于预测 y_fit1 = piecewise_linear(x_fit, a1, b1, x_intercept, a2, b2) ``` **相关问题--:** 1. 分段线性拟合中为什么要使用`curve_fit`而不是直接画线? 2. 如何处理数据集中断点(即分段点)? 3. 使用`curve_fit`时,如果初始猜测的参数不合适,会有什么影响?
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值