VisionMobile:2014年Q3移动开发者经济报告(七):6、游戏开发者国度的情况

本文分析了游戏在移动应用经济中的主导地位及Unity引擎在跨平台游戏开发领域的领导地位。报告指出,游戏类应用占据了超过80%的收入,而Unity凭借其强大的3D内容编辑器、活跃的生态系统和较低的许可费用,成为47%游戏开发者首选的工具。此外,研究还显示,游戏开发者更倾向于针对多个平台进行开发,以扩大受众范围。

文章转载只能用于非商业性质,且不能带有虚拟货币、积分、注册等附加条件。转载须注明出处http://blog.csdn.net/flowingflying以及译者@恺风Wei

2014年7月,visionMobile发表了最新一期的移动开发者经济报告 

游戏主导了消费者应用经济。App Annie指出应用商店中有超过80%的收入来自游戏类,并且比例不断增加。

移动广告收入有很大比例来自游戏。消费者应用市场几乎归为游戏市场,这并非不公平。在我们超过1万名开发者的研究中,发现有33%的开发者在制造游戏,但大部分收入集中在少数出版商,他们每年收入达到数万甚至数十万美金。他们几乎都是免费游戏,通过小部分受众对消耗品的应用内购买(例如装备)来货币化。很多游戏有着高质量的免费内容,要使用户关注新的免费游戏是困难的。于此同时,他们破坏每下载付费的市场。结果是打算获取收入的游戏开发者中,有57%每应用每月低于$500,也就是在应用贫困线之下。

跨平台寻找收入

游戏通常使用设备的全屏,不受平台UI习惯的束缚。这使游戏比其他应用在跨平台上更具有移植性。大部分游戏开发者利用这个优势,寻求更多的受众。在我们的调查中,游戏开发者平均针对3个平台,而非游戏开发者为1.75。移植性提升也表现在于小平台的游戏开发者的比例高。移动浏览器是主要的例外,因为大部分的游戏因为性能缘故采用原生代码,不容易移植到web。与在非游戏开发者流行情况比较而言,采用黑莓10的游戏开发者比例很低,这可能是因为黑莓10容易移植非游戏的Android应用,但缺乏Android游戏所依赖的NDK环境。游戏开发者优先级别在各个平台的使用者的数量上是显而易见的。典型的是Nokia X游戏开发者几乎面向6个平台,意味着,他们首先针对大部分更为流行的平台。

Unity主导了工具市场

为了实现跨平台,很多移动游戏开发者使用第三方工具。Unity是最为流行的,被47%的游戏开发者使用。Unity吸引的关键在于可视化的3D内容操控编辑器,活跃的asset和插件制作者生态系统,以及相对低的许可费用。它也支持大部分手机、PC和游戏机平台。Unity夸口说社区有2.9百万移动开发者,每月有63万活跃开发者。

接下来的三个手机游戏开发者最流行的选择要么是公司内部,要么是完全开源。这意味着很大比例的游戏开发者希望掌控自己命运,不想被第三方代码所束缚。这使得Unreal Engine,一个有趣的工具,在未来几年看好。作为一个跨平台的3D引擎,有着先进的编辑工具,在很多方面和Unity相似。就图像性能和工具化而言,它有显著的技术优势,但是同等的使用,过去一直以来比Unity的许可要贵很多。虽然如此,在今年3月,Unreal Engine转向一个非常低的月订购模式,完全源代码访问用5%的总收入分成。尽管收入分成对一个成功游戏的成本比Unity许可要贵很多,它消除了进入门槛,让开发者对代码进行完全控制。

我们对超过1万名开发者的调查数据显示,Unreal引擎和Marmalade与那些最高收入开发者的使用有关。这些工具通常被用于从游戏机或者其他手持游戏设备移植游戏,是否能对新开发者项目有相似的效果,还不清楚。

经验孕育成功

游戏设计是极富创造力的艺术,需要大量的实践。愤怒的小鸟是制造商Rovio的第52个游戏。不难发现,哪些已经出版大量游戏就是哪些最成功的。3%的手机游戏开发者出品超过50个游戏,每应用每月超过$50K的几率是那些只出品1~3个游戏的62%开发者的9倍。SuperCell似乎是打破规则的例外,作为全球最卖座的游戏出版商仅发行了3个。然而,SupperCell的管理和大部分开发者在手机游戏有非常长的历史,可以回溯到10年前早期的Java ME游戏。他们也创建了远远多于出品的游戏,是富裕的和资金雄厚的开发者的奢侈。此外,世界中大部分开发者都是通过最top的免费游戏在主流推荐渠道定价,有着庞大游戏集可以交叉推荐,是非常有价值的市场优势。手机游戏市场无疑竞争激烈。那些真想参与的应坚持不懈,但不是在失败游戏中继续努力更新和营销,我们数据给出的建议是,从中吸取教训,然后建立另外一个,可能会更好。

 

相关链接:我的产业生态链和杂谈文章

【多种改进粒子群算法进行比较】基于启发式算法的深度神经网络卸载策略研究【边缘计算】(Matlab代码实现)内容概要:本文围绕“基于多种改进粒子群算法比较的深度神经网络卸载策略研究”展开,聚焦于边缘计算环境下的计算任务卸载优化问题。通过引入多种改进的粒子群优化(PSO)算法,并与其他启发式算法进行对比,旨在提升深度神经网络模型在资源受限边缘设备上的推理效率与系统性能。文中详细阐述了算法设计、模型构建、优化目标(如延迟、能耗、计算负载均衡)以及在Matlab平台上的代码实现过程,提供了完整的仿真验证与结果分析,展示了不同算法在卸载决策中的表现差异。; 适合人群:具备一定编程基础和优化算法知识,从事边缘计算、人工智能部署、智能优化等相关领域的科研人员及研究生;熟悉Matlab仿真工具的开发者。; 使用场景及目标:①研究边缘计算环境中深度学习模型的任务卸载机制;②对比分析多种改进粒子群算法在复杂优化问题中的性能优劣;③为实际系统中低延迟、高能效的AI推理部署提供算法选型与实现参考; 阅读建议:建议结合提供的Matlab代码进行实践操作,重点关注算法实现细节与参数设置,通过复现仿真结果深入理解不同启发式算法在卸载策略中的适用性与局限性,同时可拓展至其他智能优化算法的对比研究。
本项目深入探讨了人工智能技术在网络结构解析中的实际运用,重点研究了社交网络环境中潜在连接关系的推断问题。作为网络科学的核心研究方向之一,连接关系推断旨在通过分析现有网络构型来预判可能形成或消失的关联纽带。此项研究对于把握网络演化规律、优化推荐机制以及预判社交网络发展轨迹具有重要价值。 网络结构解析旨在探究复杂系统中各实体间相互关联的模式,其研究范畴涵盖网络构建、特征挖掘、群体划分及动态演变等多个维度。在社交网络场景中,实体代表用户个体,而实体间的关联则映射出用户间的交互行为与社会联系。 网络构型特征是解析过程中的关键要素,主要包括:连接度(节点与其他节点的关联数量)、聚集度(相邻节点间形成连接的概率)、路径距离(节点间最短连通路径)以及中介度(节点在最短路径中的出现频次)。这些特征参数能够有效揭示网络内部结构规律,为连接关系推断提供理论支撑。 在连接关系推断环节,研究重点在于如何基于网络构型特征与节点属性来预判新连接产生的可能性。当前普遍采用的智能算法包括逻辑回归、支持向量机、随机森林及神经网络等。各类算法各具特色:逻辑回归具有计算效率高的优势,但在处理复杂非线性关系时存在局限;支持向量机在小样本数据处理方面表现优异,但需要较高的运算资源;随机森林则擅长处理高维数据,并能有效评估特征重要性。 本研究通过系统对比多种智能算法的预测效能,构建了完整的模型训练、交叉验证、参数优化与性能评估流程。采用曲线下面积、精准度、查全率与调和平均数等量化指标进行综合评判,从而筛选出最适合特定社交网络环境的预测模型。 该项目通过实践演示了如何运用智能计算方法解析社交网络构型特征,并对潜在连接关系进行科学预判,同时提供了多算法性能对比的实证研究案例。对于致力于网络解析、社交网络研究及智能算法应用的专业人士而言,这项研究具有重要的参考价值。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值