LeetCode(46)Permutations

本文介绍了一个使用STL库函数next_permutation实现数组全排列的方法。通过先对数组进行排序,再利用next_permutation函数获取所有可能的排列组合,最终得到所有全排列结果。

题目

Given a collection of numbers, return all possible permutations.

For example,
[1,2,3] have the following permutations:
[1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], and [3,2,1].

分析

求给定向量数组所有元素的全排列问题。

我们知道 n 个元素有n!种全排列,而STL底层文件< algorithm >中有关于排列元素的标准算法:

  1. bool next_permutation(BidirectionalIterator beg , BidirectionalIterator end);
    该函数会改变区间[beg , end)内的元素次序,使它们符合“下一个排列次序”
  2. bool prev_permutation(BidirectionalIterator beg , BidirectionalIterator end);
    该函数会改变区间[beg , end)内的元素次序,使它们符合“上一个排列次序”

如果元素得以排列成(就字典顺序而言的)“正规”次序,则两个算法都返回true。所谓正规次序,对next_permutation()而言为升序,对prev_permutation()来说为降序。因此要走遍所有排列,必须将所有元素(按升序或者降序)排序,然后用循环方式调用next_permutation()或者prev_mutation()函数,直到算法返回false。

以上两个算法的复杂度是线性的,最多执行n/2次交换操作。

AC代码

class Solution {
public:
    vector<vector<int>> permute(vector<int>& nums) {
        vector<vector<int> > ret;

        if (nums.empty())
            return ret;

        sort(nums.begin(), nums.end());
        ret.push_back(nums);
        while (next_permutation(nums.begin(), nums.end()))
            ret.push_back(nums);

        return ret;
    }
};

GitHub测试程序源码

### 题目描述 LeetCode Problem 46: **Permutations** 是一道中等难度的算法题目,主要任务是生成给定整数数组的所有可能的排列组合。例如,输入 `[1,2,3]` 应该输出以下排列结果: ``` [ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1] ] ``` 该问题的核心在于生成所有可能的排列,且每个排列中的元素必须使用一次且仅使用一次[^4]。 --- ### 解题方法 #### 方法一:回溯法(递归) 这是一种常见的递归方法,通过维护一个布尔数组 `record` 来记录哪些元素已经被使用,然后递归地尝试将未使用的元素加入当前排列中。当当前排列长度与输入数组长度一致时,就将该排列加入结果集。 ```cpp class Solution { public: vector<vector<int>> permute(vector<int>& nums) { vector<vector<int>> res; vector<bool> record(nums.size(), false); vector<int> cur; per(res, record, cur, nums, nums.size(), 0); return res; } private: void per(vector<vector<int>>& res, vector<bool>& record, vector<int>& cur, vector<int>& nums, int n, int pos) { for (int i = 0; i < n; ++i) { if (!record[i]) { record[i] = true; cur.push_back(nums[i]); if (pos == n - 1) res.push_back(cur); else per(res, record, cur, nums, n, pos + 1); cur.pop_back(); record[i] = false; } } } }; ``` 这种方法的时间复杂度为 **O(n × n!)**,其中 `n!` 是所有排列的总数,而 `n` 是每个排列的构造时间[^3]。 --- #### 方法二:逐层构建排列 该方法基于这样一个观察:每个排列可以看作是在前 `n-1` 个数的排列基础上,将第 `n` 个数插入到每一个可能的位置。通过迭代的方式,逐层构建排列。 ```java public List<List<Integer>> permute(int[] nums) { List<List<Integer>> res = new ArrayList<>(); if (nums == null || nums.length == 0) return res; List<Integer> first = new ArrayList<>(); first.add(nums[0]); res.add(first); for (int i = 1; i < nums.length; i++) { List<List<Integer>> newRes = new ArrayList<>(); for (List<Integer> item : res) { for (int j = 0; j <= item.size(); j++) { List<Integer> temp = new ArrayList<>(item); temp.add(j, nums[i]); newRes.add(temp); } } res = newRes; } return res; } ``` 该方法的时间复杂度也为 **O(n × n!)**,但实现方式更为直观,适合理解排列的构建过程[^2]。 --- ### 相关问题 - **LeetCode 47: Permutations II** —— 处理包含重复元素的排列问题。 - **LeetCode 60: Permutation Sequence** —— 找出第 k 个排列。 - **LeetCode 31: Next Permutation** —— 实现下一个字典序排列。 - **LeetCode 77: Combinations** —— 生成所有可能的组合。 这些问题都与排列、组合密切相关,适合进一步巩固递归与回溯算法的使用[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值