Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position.
For example,
Given nums = [1,3,-1,-3,5,3,6,7]
, and k = 3
.
Window position Max
--------------- -----
[1 3 -1] -3 5 3 6 7 3
1 [3 -1 -3] 5 3 6 7 3
1 3 [-1 -3 5] 3 6 7 5
1 3 -1 [-3 5 3] 6 7 5
1 3 -1 -3 [5 3 6] 7 6
1 3 -1 -3 5 [3 6 7] 7
Therefore, return the max sliding window as [3,3,5,5,6,7]
.
Note:
You may assume k is always valid, ie: 1 ≤ k ≤ input array’s size for non-empty array.
Follow up:
Could you solve it in linear time?
Hint:
- How about using a data structure such as deque (double-ended queue)?
- The queue size need not be the same as the window’s size.
- Remove redundant elements and the queue should store only elements that need to be considered.
解题思路
依据提示,借助一个deque来实现,deque里面存储可能的最大值的下标。遍历数组,若当前元素大于队列尾部元素,则移除尾部元素,然后添加当前元素的下标。提取deque中的值时,需要考虑deque首部的值是否在当前元素的窗口内。
实现代码
// Runtime: 31 ms
public class Solution {
private Deque<Integer> deque = new LinkedList<Integer>();
public int[] maxSlidingWindow(int[] nums, int k) {
if (k == 0) {
return new int[0];
}
int[] res = new int[nums.length - k + 1];
for (int i = 0; i < nums.length; i++) {
while (!deque.isEmpty() && nums[i] >= nums[deque.peekLast()]) {
deque.pollLast();
}
deque.offerLast(i);
while (deque.peekFirst() < i - k + 1) {
deque.pollFirst();
}
if (i >= k - 1) {
res[i - k + 1] = nums[deque.peekFirst()];
}
}
return res;
}
}