动态树-LCT-bzoj2002弹飞绵羊

原创 2016年08月18日 19:44:57

我的第一篇博客给LCT(Link-Cut Tree)^_

动态树要求我们维护一个由若干棵子结点无序的有根树组成的森林。 要求这个数据结构支持对树的分割,合并,对某个点到它的根的路径的某些操作, 以及对某个点的子树进行的某些操作。其中解决问题使用最多的是LCT,这里就主要介绍一下LCT吧。

其实动态树主题思想跟树链剖分差不多,非常频繁的使用了Splay。

类似树链剖分的定义:
PreferredChild:如果结点v的子树中, 最后被访问的结点在子树w中, 这里w是v的儿子, 那么就称w是v的PreferredChild
PreferredEdge:每个点到它的PreferredChild的边称作PreferredEdge
PreferredPath:由PreferredEdge连接成的不可再延伸的路径称为 PreferredPath

一颗LCT
容易得出整棵树就被划分成了若干条 PreferredPath。对每条 PreferredPath, 用这条路上的点的深度作为关键字, 用一棵平衡树来维护它(一般使用Splay,理论上Treap也可以,可是我从没有看见有人这样做过)。然后这棵平衡树就被叫做AuxiliaryTree。我们把AuciliaryTree中深度最小的节点的父亲节点称为PathParent。

Link-Cut Trees 就是将要维护的森林中的每棵树 T 表示为若干个 AuxiliaryTree, 并通过PathParent将这些AuxiliaryTree连接起来的数据结构

图解
这里写图片描述^

基本操作
首先是它最基本的操作 access(x)。
一旦我们调用access(x),那么从点x到根结点的路径就成为一条新的 PreferredPath。 如果路径上的某个节点u不是它的父亲v的PreferredChild, 那么我们要将v的PreferredChild变为u , 原本包含v的PreferredPath/AuxiliaryTree将不再包含节点v及其之上的部分。

其他操作
-find_root(x)操作-即找到节点x所在树的根节点。
先access(x),然后将x Splay到所在AuxiliaryTree的根节点。找到这棵AuxiliaryTree最左端的点即可。

-cut(x)操作-即断开x与其父亲节点的边。
先access(x),然后将x Splay到所在AuxiliaryTree的根节点。断开x和父亲节点的边。

-link(v,w)操作-让v成为w的新的儿子。其中v是一棵树的根结点,并且v和w是不同的两棵树中的结点。
先访问v,然后修改v所属的AuxiliaryTree的PathParent为w,然后再次访问v。

下面是LCT的一道例题 bzoj2002弹飞绵羊
题目大意 :n个装置编号为0-n-1,每个装置一个值表示一旦到这个装置上就会往后弹的步数,要求最少跳多少步能从输入的第x号节点弹出去。

做法 :若可以从i弹到j则连一条从j到i的边,若弹飞了,则连一条从0到i的边。

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int maxn=200010;
int fa[maxn],size[maxn],ch[maxn][2];
int n;
void maintain(int x){
    size[x]=size[ch[x][0]]+size[ch[x][1]]+1;
}
bool isroot(int x){
    return ch[fa[x]][0]!=x && ch[fa[x]][1]!=x;
}
void rotate(int x){
    int y=fa[x],z=fa[y];
    int l,r;
    if(ch[y][0]==x) l=0;
    else l=1;
    r=l^1;
    if(!isroot(y)){
        if(ch[z][0]==y) ch[z][0]=x;
        else ch[z][1]=x;
    }
    fa[x]=z;
    fa[y]=x;
    fa[ch[x][r]]=y;
    ch[y][l]=ch[x][r];
    ch[x][r]=y;
    maintain(y);
}
void splay(int x){
    while(!isroot(x)){
        int y=fa[x],z=fa[y];
        if(!isroot(y)){
            if(x==ch[y][0] ^ y==ch[z][0]) rotate(x);
            else rotate(y);
        }
        rotate(x);
    }
    maintain(x);
}
void access(int x){
    int t=0;
    while(x){
        splay(x);
        ch[x][1]=t;
        maintain(x);
        t=x;
        x=fa[x];
    }
}
void cut(int x){
    access(x);
    splay(x);
    ch[x][0]=fa[ch[x][0]]=0;
}
void link(int x,int y){
    cut(x);
    fa[x]=y;
    maintain(x);
}
int main(){
    int i,x,y,tmp;
    scanf("%d",&n);
    for(i=1;i<=n;i++){
        scanf("%d",&tmp);
        fa[i]=i+tmp>n?0:i+tmp;
        size[i]=1;
    }
    int q;
    scanf("%d",&q);
    for(i=1;i<=q;i++){
        scanf("%d%d",&x,&y);
        y++;
        if(x==1){
            access(y);
            splay(y);
            printf("%d\n",size[ch[y][0]]+1);
        }else{
            scanf("%d",&x);
            link(y,y+x>n?0:y+x);
        }
    }
    return 0;
}

^_^

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

【动态树】弹飞绵羊

简洁暴力动态树 类似于树链剖分,只不过重边不以子树大小唯一确定,而是随着询问适时改变,从而摆脱静态的限制,可以动态添边删边。 边分为实边与虚边,实边连的称为路径,用splay维护(以保证可以动态加...

从《NOI2014 魔法森林》看动态树(LCT)的简单应用

题目大意 给定一个n个结点,m条边的的无向图,每条边有两个权值ai,bi。 现在从1出发,要到达n,出发时带上任意多的A,B,每次只能沿着ai≤A且bi≤B的边走,问至少要带多少的A,B使得能从1到...

动态树LCT总结

动态树中最关键的一个函数就是Access(

专题总结:动态树 LCT(Link cut tree)

HUST开的一套动态树专题,全是经典题:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=25242#overview 先说一下什么是...
  • NOI2015
  • NOI2015
  • 2015年02月01日 21:04
  • 755

动态树 LCT(Link-Cut-Tree)--入门教程

什么是LCT(Link-Cut-Tree)根据杨哲先生的论文(QTREE),可以得知,动态树问题是一类问题的统称,而解决这种问题最常用到的数据结构就是LCT(Link-Cut-Tree)。LCT的大体...

动态树~LCT总结

这是我开的一套动态树专题:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=25242#overview 首先说一下什么是动态树。动态树可以...

动态树LCT(SPOJ375)

原来用树链剖分写过,最近学动态树,从写一遍 题意:改变边权值,询问连点之间边权的最大值 思路:这个题维护的是边权,我是吧边权转化为点权,这样需要注意的是不能换根,因为换根之后权值就变了 那么如何...

移动互联时代的新机会

我在这里稍微预想下不远的将来,可以肯定的是网速的提升是必然的,网络的普及也是必然的,应该不用2-3年,我们的3G包月服务应该就会像现在的家庭宽带一样普及了,在这样的条件下,我们的生活将会发生哪些改变?...

LCT 讲解 动态树的基本使用

Link-Cut-tree 动态树解决树上问题的一种数据结构,没学过树链剖分的建议先学一下树链剖分。你们先假装会了树链剖分 QwQ。树链剖分是对树进行轻重链剖分,重链的条数不超过logn条,用线段树维...

Win10系统怎样让打开图片方式为照片查看器

首先,我们需要使用注册表编辑器来开启Win10系统照片查看器功能,因为其实这个功能是被隐藏了,那么按下Windows徽标键+R键,打开运行命令窗口,输入“regedit”命令。 ...
  • DY_DAVE
  • DY_DAVE
  • 2016年12月08日 22:49
  • 142
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:动态树-LCT-bzoj2002弹飞绵羊
举报原因:
原因补充:

(最多只允许输入30个字)