关闭

caffe分类训练不收敛原因分析

1. 数据和标签 数据分类标注是否准确?数据是否干净? 另外博主经历过自己创建数据的时候数据标签设置为1,2,...,N,训练的时候最后FC层设置的输出output num为N。训练的时候loss一直不降。后来将标签改为0,1,2,...,N-1,重新训练,很快就收敛了。 为啥label需要从0开始? 在使用SoftmaxLoss层作为损失函数层的单标签分类问题中,label要求从...
阅读(7) 评论(0)

Cmake相同源码,编a库OK,编so库提示各种未定义的引用

由于缺少arm小伙伴,我这个对arm一窍不通的小白菜也只好自己动手了。 遇到杂七杂八各种问题。捡一点儿记录一下,一呢方便以后在遇到类似问题回顾,另外呢,如果能帮到像我一样的小白菜那就更好了。 这次呢,我是用ncnn架构封装人脸相关的算法库。 把库源码和示例源码一起编译,生成静态库a库和测试用的可执行文件main,米有问题,测试结果也正确。 保持一切不变,只是将add_lib...
阅读(119) 评论(1)

论文理解:DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations

本文为香港中文大学与熵汤联合出品的一篇CVPR。获取链接:http://www.ee.cuhk.edu.hk/~xgwang/papers/liuLQWTcvpr16.pdf 主要包含两个工作: 1. 创建了一个服装数据集DeepFashion,包含80万张服装图像,有类别,属性,特征点以及服饰框的标注。详情可以参考我的另一篇博客DeepFashion: 服装公开数据集概述。 2...
阅读(100) 评论(0)

DeepFashion: 服装公开数据集概述

本博记录为卤煮理解,如有疏漏,请指正。转载请注明出处。 卤煮:非文艺小燕儿 本博地址:DeepFashion: 服装公开数据集概述 最近开始入坑服饰识别。 DeepFashion(http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html)是香港中文大学开放的一个large-scale数据集。包含80万张图片,包含不同角度,不同场...
阅读(340) 评论(0)

Unknown bottom blob 'data' (layer 'conv1', bottom index 0)

caffe训练的时候,出现错误Unknown bottom blob 'data' (layer 'conv1', bottom index 0) 原因1:  data layer中的top名称与conv1 bottom的名称不一致。 比如:(下方红色字内容应该统一,否则报错) name: "Test_net" layer { name: "data" type: "H...
阅读(228) 评论(0)

人脸识别--Open set和Close set的区别

训练和测试人脸识别分类器时,总会提到Open-set和Close-set。这俩词到底是什么概念呢?有什么区别呢? 所谓close-set,就是所有的测试集都在训练集中出现过。所以每次的预测直接得出测试图片的ID,如果想测试两张图片是不是同一个人,那么就看这两张图片的预测结果是不是相同的ID。一个形象的例子就是,如果把训练集看做教科书,测试集看做考试的话,那么就是考点都在教科书中。...
阅读(212) 评论(0)

利用SSE计算向量点乘simd_dot

本博记录为卤煮理解,如有疏漏,请指正。转载请注明出处。 卤煮:非文艺小燕儿 本博地址:利用SSE计算向量点乘simd_dot 所谓SSE(Streaming SIMD Extensions),也就是单指令多数据流的扩展。所谓单指令多数据流呢,简单理解就是多个数据流同时处理一条指令。 举个栗子: 一个水箱中的水,底部开1个洞放水,就是单指令单数据流。底部同时开多个相同大小的洞放...
阅读(273) 评论(0)

MTCNN人脸及特征点检测---代码应用详解(基于ncnn架构)

本博记录为卤煮理解,如有疏漏,请指正。转载请注明出处。 卤煮:非文艺小燕儿 本博地址:MTCNN人脸及特征点检测---代码应用详解 本文主要讲述当你拿到MTCNN的caffemodel后,如果使用它对一张图里的人脸进行检测和特征点标定。 相当于一个代码实现的解释。因为最近卤煮在用ncnn,所以该代码也是基于ncnn架构做的。 caffe架构同理。...
阅读(1167) 评论(0)

NMS非极大值抑制:用擂台赛带你从原理到代码脑洞大开恍然大悟

本博记录为卤煮理解,如有疏漏,请指正。 卤煮:非文艺小燕儿 本博地址:NMS非极大值抑制:带你从原理到代码脑洞大开 楼主是在人脸识别应用时,接触到NMS的。其余目标检测同理。 简单来说就是你喂给分类器一张图片,它会给你拉出,哦不,不太雅,吐出一堆可能是人脸的候选框,每个框框还有一个得分。高分意味着这个框框里是人脸的概率大。 用下面这个图简单表示一下: 有4个框,每个框都...
阅读(225) 评论(0)

腾讯开源ncnn:Ubuntu下运行示例

本博记录为卤煮使用时的记录,如有疏漏,请指正。 卤煮:非文艺小燕儿 本博地址:腾讯开源ncnn:Ubuntu下运行示例 感谢开源共享的各位大牛们,让我们能够站在巨人的肩膀上前行。 ncnn Git:https://github.com/Tencent/ncnn ncnn 是一个为手机端极致优化的高性能神经网络前向计算框架。ncnn 从设计之初深刻考虑手机端的部...
阅读(1341) 评论(4)

CMake使用整理

CMake是一个跨平台的安装(编译)工具,可以用简单的语句来描述所有平台的安装(编译过程)。他能够输出各种各样的makefile或者project文件,能测试编译器所支持的C++特性,类似UNIX下的automake。 CMake的所有的语句都写在一个叫:CMakeLists.txt 的文件中。 CMakeLists.txt中常用指令如下: 1. cmake_...
阅读(183) 评论(0)

C++:采用添加资源的方式将模型文件悄悄封入dll

本博记录为卤煮使用时的记录,如有疏漏,请指正。 卤煮:非文艺小燕儿 本博地址: 采用添加资源的方式将模型文件悄悄封入dll 对于搞神经网络和深度学习的公司来说,模型文件算是核心技术文件之一。 如果给别人SDK的时候,把模型文件以原来的样子直接给人家,无疑就是把自己的核心技术拱手送人,估计很多公司还是没有这个魄力的。 所以要么给模型加密,要么直接封入API的dll文件中。第...
阅读(311) 评论(0)

腾讯开源ncnn:自己的模型运行结果与caffe的结果不一样

本博记录为卤煮使用时的记录,如有疏漏,请指正。 卤煮:非文艺小燕儿 本博地址: 腾讯开源ncnn:自己的模型运行结果与caffe的结果不一样 感谢开源共享的各位大牛们,让我们能够站在巨人的肩膀上前行。 自己之前用caffe和tinyDNN框架跑得模型,这次用腾讯开源的ncnn的跑了一下,最后一层的输出结果却很不一样,大概是0.x和几十的差距。 纠结半天发现是输出图像归一化...
阅读(998) 评论(0)

腾讯开源ncnn:caffemodel转化为.param和.bin文件

本博记录为卤煮使用时的记录,属于事后回忆记录,如有疏漏,请指正。 卤煮:非文艺小燕儿 本博地址:腾讯开源ncnn:caffemodel转化为.param和.bin文件 感谢开源共享的各位大牛们,让我们能够站在巨人的肩膀上前行。 ncnn Git:https://github.com/Tencent/ncnn ncnn 是一个为手机端极致优化的高性能神经网络前向...
阅读(1789) 评论(4)

腾讯开源ncnn:示例程序运行

本博记录为卤煮使用时的记录,属于事后回忆记录,如有疏漏,请指正。 卤煮:非文艺小燕儿 本博地址:ncnn:示例程序运行 感谢开源共享的各位大牛们,让我们能够站在巨人的肩膀上前行。 ncnn git:https://github.com/Tencent/ncnn ncnn 是一个为手机端极致优化的高性能神经网络前向计算框架。ncnn 从设计之初深刻考虑手机端的部署和使用。无...
阅读(3769) 评论(1)
89条 共6页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:98877次
    • 积分:1457
    • 等级:
    • 排名:千里之外
    • 原创:36篇
    • 转载:53篇
    • 译文:0篇
    • 评论:85条
    最新评论