问题描述: 给定一个数据,求数据中相邻元素的最大和。例如:对于数组[5,-6,5,3,6,-8],其相邻元素最大和为14(5+3+6)。 算法实现如下: package test; import java.util.Random; import org.junit.Test; public class TestAlgorithm { /** * 对于数组分为两个大小基本相等的部分,那么最大和集必然出现在以下三种情况下: * <p>1.最大和集出现在前半部分内,或者是整个前半部分; * <p>2.最大和集出现在后半部分内,或者是整个后半部分; * <p>3.如果过既不出现在前半部分,也不出现在后半部分,那么最大和必然横跨前半部分和后半部分, * 所以前半部分(假设a)和后半部分(假设b)的分割点(假设i)必然包含在最大和集中,那么这时候只需要以i * 为起点向前求其最大和集(c1),向后求其最大和集(c2),那么这种情况下最大和集为c1+c2; * <p>所以最大和集的求法即可采用分治算法,递归求出数组前半部分,后半部分,和整个部分的最大值即可。 */ public int divideAndConquerSum(int[] a,int low,int high){ if(low>high) return 0; if(low==high) return max(0,a[low]); //求出在[low,high]内包含a[mid]的最大sum int mid=(low+high)/2; int isum=0; int lsum