POJ 2096 Collecting Bugs 马尔可夫链 概率DP

AC自动机的专题刷完了...开始刷概率了...


题目大意:

就是现在要从一个软件中找出bug, 这个软件有s个子模块,一共有n种bug,现在每天你可以找到一个bug, 这个bug属于任何一种bug和任何一个子模块都是等可能的, 问需要多少天使得每个子模块都有bug找到, 且一共找到n中不同的bug,求这个天数期望


大致思路:

大致思路见代码注释


代码如下:

Result  :  Accepted     Memory  :  8668 KB     Time  :  266 ms

/*
 * Author: Gatevin
 * Created Time:  2014/11/29 16:08:54
 * File Name: Asuna.cpp
 */

//submit language : G++

#include<iostream>
#include<sstream>
#include<fstream>
#include<vector>
#include<list>
#include<deque>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<bitset>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cctype>
#include<cmath>
#include<ctime>
#include<iomanip>
using namespace std;
const double eps(1e-8);
typedef long long lint;

double dp[1010][1010];

/*
 * 用dp[i][j]表示当前找到了i种病毒,j个子模块已经找到了病毒之后,到达n中病毒,s个子模块的期望天数
 * 那么对于点(i, j)可以到达状态 (i, j), (i + 1, j), (i, j + 1), (i + 1, j + 1), 当然到达状态需要在1~n, 1~s之间
 * 因为从dp[0][0]出发一定会到达dp[1][1]也就是说i, j不可能只有1个为0, 同时i <= n, j <= s
 * 那么由于每次转移的代价都是1在上面的范围内
 * dp[i][j] =   (i*j)/(n*s)*dp[i][j] + (n - i)*j/(n*s)*dp[i + 1][j]
              + i*(s - j)/(n*s)*dp[i][j + 1] + (n - i)*(s - j)/(n*s)*dp[i + 1][j + 1] + 1(转移代价)
 * 对于i + 1, j + 1出界的情况就不用加上了,因为不存在这样的转移
 * 而且显然有dp[n][s] = 0
 * 用两层循环可以算出dp[1][1], 答案dp[0][0] = dp[1][1] + 1
 */

int main()
{
    int n,s;
    while(~scanf("%d %d", &n, &s))
    {
        memset(dp, 0, sizeof(dp));
        for(int i = n; i >= 1; i--)
            for(int j = s; j >= 1; j--)
            {
                if(i == n && j == s) continue;
                if(i < n) dp[i][j] += dp[i + 1][j]*(n - i)*j;
                if(j < s) dp[i][j] += dp[i][j + 1]*i*(s - j);
                if(i < n && j < s) dp[i][j] += dp[i + 1][j + 1]*(n - i)*(s - j);
                dp[i][j] += n*s;
                dp[i][j] /= (n*s - i*j);
            }
        printf("%.4f\n", dp[1][1] + 1);
    }
    return 0;
}


  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值