poj1185 点独立集/最大团

炮兵阵地
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 20469 Accepted: 7932

Description

司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队。一个N*M的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示),也可能是平原(用"P"表示),如下图。在每一格平原地形上最多可以布置一支炮兵部队(山地上不能够部署炮兵部队);一支炮兵部队在地图上的攻击范围如图中黑色区域所示: 

如果在地图中的灰色所标识的平原上部署一支炮兵部队,则图中的黑色的网格表示它能够攻击到的区域:沿横向左右各两格,沿纵向上下各两格。图上其它白色网格均攻击不到。从图上可见炮兵的攻击范围不受地形的影响。 
现在,将军们规划如何部署炮兵部队,在防止误伤的前提下(保证任何两支炮兵部队之间不能互相攻击,即任何一支炮兵部队都不在其他支炮兵部队的攻击范围内),在整个地图区域内最多能够摆放多少我军的炮兵部队。 

Input

第一行包含两个由空格分割开的正整数,分别表示N和M; 
接下来的N行,每一行含有连续的M个字符('P'或者'H'),中间没有空格。按顺序表示地图中每一行的数据。N <= 100;M <= 10。

Output

仅一行,包含一个整数K,表示最多能摆放的炮兵部队的数量。

Sample Input

5 4
PHPP
PPHH
PPPP
PHPP
PHHP

Sample Output

6

将相互冲突的点连边,那么该题就转化为求最大点独立集,进而求其补图的最大团。

代码:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#define Maxn 1010
using namespace std;

int adj[Maxn][Maxn];
int cq[Maxn];
int cnt[Maxn];
int ans;
int n;
bool dfs(int u,int tot){
    if(tot>ans){
        ans=tot;
        return true;
    }
    for(int v=u+1;v<=n;v++){
        if(tot+cnt[v]<=ans) return false;
        if(adj[u][v]){
            bool flag=true;
            for(int w=0;w<tot;w++)
                if(!adj[cq[w]][v]){
                    flag=false;
                    break;
                }
            if(flag){
                cq[tot]=v;
                if(dfs(v,tot+1)) return true;
            }
        }
    }
    return false;
}
void solve(){
    ans=0;
    for(int i=n;i>0;i--){
        cq[0]=i;
        dfs(i,1);
        cnt[i]=ans;
    }
}
struct point{
    int x,y;
    point(int xx=0,int yy=0):x(xx),y(yy){}
}p[Maxn];
char s[110][20];
bool check(int i,int j){
    if(p[i].x==p[j].x)
        return abs(p[i].y-p[j].y)<=2;
    if(p[i].y==p[j].y)
        return abs(p[i].x-p[j].x)<=2;
    return false;
}
int main()
{
    int np,mp;
    while(~scanf("%d%d",&np,&mp)){
        n=0;
        for(int i=0;i<np;i++){
            scanf("%s",s[i]);
            for(int j=0;s[i][j];j++)
                if(s[i][j]=='P') p[++n]=point(i,j);
        }
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                adj[i][j]=0;
        for(int i=1;i<=n;i++)
            for(int j=i+1;j<=n;j++)
                if(check(i,j)) adj[i][j]=adj[j][i]=1;
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                if(i!=j) adj[i][j]^=1;
        solve();
        printf("%d\n",ans);
    }
	return 0;
}

另外的解法参见状压dp:状压dp 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值