题意:把一个字符串通过增、删、改三种操作变成另外一个字符串,求最少的操作数。
分析:
- 可以用LCS求出最大公共子序列,再把两个串中更长的那一串中不是公共子序列的部分删除。
- 分析可知两个字符串的距离肯定不会超过它们的长度之和,因为我们可以通过删除操作把两个串化为空串。如果两个字符串的第一个元素相同,则求A[2...ALen]和B[2...BLen]即可,如果不相同,则逐一分析增、删、改对下一步的影响:
- 删除A串的第一个字符,然后计算A[2...ALen]和B[1...BLen]即可。
- 删除B串的第一个字符,然后计算A[1...ALen]和B[2...BLen]即可。
- 修改A串的第一个字符,然后计算A[2...ALen]和B[2...BLen]即可。
- 修改B串的第一个字符,然后计算A[2...ALen]和B[2...BLen]即可。
- 增加A串的第一个字符到B串,然后计算A[2...ALen]和B[1...BLen]即可。
- 增加B串的第一个字符到A串,然后计算A[1...ALen]和B[2...BLen]即可。
总之,一步操作以后,会出现三种情况,A[2...ALen]和B[1...BLen],A[1...ALen]和B[2...BLen],A[2...ALen]和B[2...BLen],这样可以用递归求解了。但是递归求解时有些数据会被重复计算,所以使用一个二维数组来记录已经计算过的情况。
其实,这两个解法的本质是相同的,不过分析的角度不一样。递归可以改成非递归的形式,会和LCS的dp解法大同小异。
LCS: