关闭

小白鼠算法

标签: 算法生物
1618人阅读 评论(0) 收藏 举报

有 1000 个一模一样的瓶子,其中有 999 瓶是普通的水,有一瓶是毒药。任何喝下毒药的生物都会在一星期之后死亡。现在,你只有 10 只小白鼠和一星期的时间,如何检验出哪个瓶子里有毒药?

【1】O(N)

      如果没有时间要求,则只需要一个小白鼠,顺次喝瓶子,什么时候死亡,则是该瓶子。

【2】O(log2(N))

      如果没有时间要求,则二分这1000个瓶子,这样,是log2(1000)=10,且需要10只老鼠。

【3】O(log10(N))

      如果没有时间要求,充分利用这10只老鼠,分成((100)(100)(100)(100)(100)(100)(100)(100)(100)(100))然后每个老鼠吃一个混合的100瓶,然后死掉一个老鼠,说明在这100个中,现在剩余9个老鼠,然后将100分为12*9,在其中某个12中,然后剩8只小白鼠了,分成2*8,这样在其中某个2中,然后分成1*7,则找到了,共log10(1000)=4次。

【4】O(log(1))

根据2^10=1024,所以10个老鼠可以确定1000个瓶子具体哪个瓶子有毒。具体实现跟3个老鼠确定8个瓶子原理一样。

000=0
001=1
010=2
011=3
100=4
101=5
110=6
111=7
一位表示一个老鼠,0-7表示8个瓶子。也就是分别将1、3、5、7号瓶子的药混起来给老鼠1吃,2、3、6、7号瓶子的药混起来给老鼠2吃,4、5、6、7号瓶子的药混起来给老鼠3吃,哪个老鼠死了,相应的位标为1。如老鼠1死了、老鼠2没死、老鼠3死了,那么就是101=5号瓶子有毒。
同样道理10个老鼠可以确定1000个瓶子


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:415585次
    • 积分:4235
    • 等级:
    • 排名:第7161名
    • 原创:82篇
    • 转载:37篇
    • 译文:0篇
    • 评论:23条
    最新评论