读书分享(三)| 记忆方法 忆>记(多测试,少背诵)(更积极学习)(复习很重要,在完成复习后,才可以看新的。子曰:“无欲速,无见小利。欲速则不达,见小利则大事不成。[1] 杨鹏.《17天搞定GRE单词》.西安:西安交通大学出版社,2013年7月第1版第1次印刷。快速、少量、多次(例如单词:只看基本含义,每天300个,记忆标准不要太高,用法在真题中训练)发挥主观能动性,挖掘意义(勤思考、勤比较、勤联想、勤使用>难被忘却)一直坚持复习到考前(一天不复习就忘,一个月不复习前功尽弃)遮住中文回想意思、遮住答案回想选项。
读书分享(一)| 学习方法论 写作:背文章是提高英语实力和考试分数最好的方法(背诵、默写、仿写。)(熟读唐诗三百首,不会作诗也会吟。听力:听写是提高听力唯一方法。(对照原文、录音、反复跟读模仿。[1] 王江涛. 学好英语这本书就够了[M]. 湖北教育出版社, 2016.刚起床没有前摄干扰,有助于短期记忆;临睡前没有后摄于扰,有助于长期记忆。精研真题(10~20套足够,学习不在于多,而在于精)英语:少听、少说、少写,少而精!阅读:英译汉是提高阅读最好方法。口语:跟读模仿是学习口语最好方法。记忆:艾宾浩斯遗忘曲线*
python实现DQN代码 `DQN` 类定义了一个简单的神经网络模型,包括三个全连接层。`ReplayBuffer` 类实现了经验回放缓存。`DQNAgent` 类定义了 DQN 算法,包括网络模型、优化器、经验回放缓存等部分。`select_action` 方法用于选择动作,`learn` 方法用于更新模型参数,`update_target` 方法用于更新目标网络。`train` 函数用于训练模型,`test` 函数用于测试模型。在示例中,我们在 CartPole-v0 环境上运行了 DQN 算法。
使用gnuplot画图 step1 准备数据cwnd.datstep2 创建画图脚本cwnd.gnuplotstep3 写入cwnd.gnuplot# 生成xx.eps矢量图,可以转换为.pdf等格式set terminal postscript eps enhanced size 5, 4 color solid linewidth 3 front 'Times, 32' # terminal postscript eps将图画到eps文件中; enhanced使用增强模式, size 5, 4 横纵比为5:4,colo
【强化学习】多智能体强化学习框架PYMARL 简介pymarl是由英国牛津大学计算机科学系机器学习研究组WhiRL部署的深度强化学习框架,实现包括以下算法:QMIX: QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement LearningCOMA: Counterfactual Multi-Agent Policy GradientsVDN: Value-Decomposition Networks For Cooperative Mul
【深度学习】多层感知机(multilayer perceptron,MLP) def relu(X): return torch.max(X, 0)W1 = nn.Parameter(torch.randn(num_input, num_hiddens) * 0.01) b1 = nn.Parameter(torch.zeros(num_hiddens)) # 偏移W2 = nn.Parameter(torch.randn(num_hiddens, num_output) * 0.01)b2 = nn.Parameter(torch.zeros(num_outpu...
【ns3-gym】安装 [1] protobuf-3.6.1 安装(Linux)如何编译源码目录下只有configure.ac文件和Makefile.am文件的工程如果要编译的源码没有configure文件,执行如下命令。在执行过程中遇到缺失依赖包,则用apt-get安装即可。aclocalautoconfautoheaderautomake --add-missing./configure --prefix=/usr/local/binmakemake checkmake install# wget ht
tiny-dnn安装与使用 简介:轻量级神经网络开源库。适用于部署到有限计算资源设备的深度学习算法。安装:克隆源码库git clone https://github.com/tiny-dnn/tiny-dnn使用编译工具cmake生成makefile文件安装cmake工具:教程(Ubuntu 18.04下安装最新CMake及CMake简单使用)若要执行tiny-dnn里面的项目或测试单元,执行以下命令cd tiny-dnncmake -BUILD_EXAMPLES=ON -BUILD_TESTS=.
【网络仿真】ns-3与物理网络连接 step1 运行脚本src/fd-net-device/examples/fd-tap-ping.cc脚本功能:使用主机上的ns-3仿真模型和节点,ping远程主机。脚本拓扑://// +-------------------------------------+ // | host |// +-------------------------------------+ // | ns-3 simu
【网络仿真】ns-3版本升级 概述:ns-3版本更新以前只知道重新下载新安装包,新学习了diff和patch文件的使用[1]。发现ns-3从旧版本升级到新版本很方便,不需要重新删除下载安装包。方法(以ns-3.33升级为ns-3.34为例)在已有ns-3.33基础之上,下载文件ns-3.33-to-ns-3.34.patch放入文件夹ns-allinone-3.33下面。在ns-allinone-3.33/ns-3.33中执行命令 patch -p1 < ../ns-3.33-to-ns-3.34.patch
【doing PhD】Facebook:26条时间管理秘籍 45678910111213141516171819202122232425 写下杂念26 适度休息不会休息的人,也不会工作(有效休息:睡眠,冥想,运动,弹乐器;玩手机不算)共勉
【网络仿真】ns-3 tracing系统 1 trace 变量作用:追踪记录某些网络行为(如数据分组发送、接受、丢失事件)或网络指标(如TCP cwnd)。本质:C++类的成员变量,变量类型为函数指针。使用:用户先预定义回调函数callback,再通过tracing系统将回调函数与C++对象内部的函数指针(trace变量)相关联。发生特定网络事件时,ns-3调用对应trace变量,从而触发回调函数,模拟数据通过回调函数参数列表形式传递给脚本2 trace 变量配置2.1 Config::Connect()2.2 Helper类2.
【网络仿真】ns-3链路与物理层 1 有线网络:PPP与CSMAns-3目前支持的有线网络底层传输协议有两个:点对点(Point-To-Point, PPP)和载波侦听多路访问(Carrier Sense Multiple Access ,CSMA)。(PPP的握手协议、以太网冲突检测 (Collection Detection) 没有被支持)PPPCSMA源码scr/point-to-pointsrc/scma作用两个结点的点对点分组传输多个结点接入总线网络助手类PointToPointHe