从分类,排序,top-k多个方面对推荐算法稳定性的评价

原创 2016年04月23日 13:44:57

介绍

论文名: “classification, ranking, and top-k stability of recommendation algorithms”.
本文讲述比较推荐系统在三种情况下, 推荐稳定性情况.
与常规准确率比较的方式不同, 本文从另一个角度, 即推荐算法稳定性方面进行比较.

详细

参与比较的推荐算法

包括:

  1. baseline
  2. 传统基于用户
  3. 传统基于物品
  4. oneSlope
  5. svd

比较方式

比较的过程分为两个阶段:

阶段一, 将原始数据分为两个部分, 一部分为已知打分, 另一部分为未知打分, 用于预测.
阶段二, 在用于预测打分那部分数据中, 取出一部分数据, 加入到已知打分部分, 剩余部分仍然为预测部分.

比较阶段一中的预测结果和阶段二中预测结果的比较.
数据划分情况如图所是.

数据划分

比较的方式

预测稳定性

预测性的评价方式有以下几种:
MAE, RMSE

分类稳定性

分类型的评价方式有以下几种:
准确率, 召回率, F-分数.

排名稳定性

排名型的评价方式有以下几种:
排名相关性, Spearman的ρ评价, Kruskal的γ评价, Kendall的τ评价.

前K项稳定性

前k项的评价方式有以下几种:
点击率稳定性(hit-rate), NDCG(normalized discounted cumulative gain).

比较的场景

稀疏性冲击

改变数据的稀疏性, 从几个方面比较这些推荐算法的稳定性.

结果如图所是.

这里写图片描述

基于内存的推荐算法和slopeone算法表现出强烈的不稳定性和对数据敏感性.
svd和baseline算法相对稳定.

评价数量冲击

改变第二阶段中新加入数据的数量, 比较两次实验的差异.

结果如图所是:

这里写图片描述

横坐标为比例, 即已知打分数据的倍数, 从10%到500%.

从图中可以看出, 在新加入的数据较少时, 各个推荐算法表现出高度的稳定性.

当新加入的数据较多时, 基于内存的推荐算法的稳定性不断下降.
相反, 基于模型的方法相对稳定.

打分分布冲击

除了新加入的数据外, 新加入的数据的数据分布也一定程度上影响了推荐算法的稳定性.

下表显示了修改数据分布的策略:

这里写图片描述

实验的结果如下:

这里写图片描述

从图中可以看出, 当加入的数据为随机时, 各个推荐算法都表现出相对较高的稳定性.
但是, 当添加的数据出现歪斜时, 基于内存的推荐算法的稳定性降低较快, 基于模型的推荐算法的稳定性基本保持不变.

算法参数冲击

对于推荐算法而言, 除了数据的因素外, 还有算法本身参数对算法稳定性的影响.

对于基于内存的算法, 相似用户/物品的数量影响着推荐算法的效果,
对于svd算法, 隐含属性的数量影响着推荐算法的结果.

实验通过修改推荐算法参数的方式进行比较, 结果如图所时:

这里写图片描述

对于top-K的比较, k值的大小也影响推荐算法的稳定性.
通过修改k的大小, 实验的结果如图所时:

这里写图片描述

实验结果表示:

对于修改算法的参数, 对svd算法的影响较少, 对于基于内存的算法影响较大.

修改top-k中k的大小, 对基于模型的推荐算法影响较小, 对于基于内存的推荐算法的稳定性影响较大.

总结

对于上面多种情况的比较.
基于模型的推荐算法在多种情况下, 稳定性较高, 特别时svd算法.
基于内存的推荐算法稳定性较差.

相关文章推荐

Top-N推荐算法-简介

Top-N是常用的一种直接向用户进行个性化信息推送的手段.很多网站精于此道, 比如豆瓣, 淘宝, Amazon.本质上说, Top-N就是collaborative filtering (CF)是一种根...
  • d_yang
  • d_yang
  • 2008年10月15日 11:19
  • 5720

Top-N Recommendation——基于用户的推荐实验

无论是在实体商店还是在网络上,都会有Top-N推荐的情况。基于客户或者基于商品做出推荐。本实验基于Movielens、Ratings的电影数据集,对用户做出Top-N 推荐。主要目的是基于User-B...

今天来学习下美团推荐算法实践:机器学习重排序模型

转载,来自小象学院。 美团推荐算法实践:机器学习重排序模型 文章介绍了美团推荐系统的构架和优化过程,包括数据层,触发层,融合过滤层和排序层,采用了Hbase,Hive,Storm,Spark和机器...

标签个性化数据在推荐排序中的应用

标签个性化数据在推荐排序中的应用 导读  “个性化是这个时代最耀眼的特征,谁能更好更快的抓住用户的个性化需求,谁就将赢得商业的未来”——《个性化,商业的未来》 本文share的这个项目,是我...
  • ruidu
  • ruidu
  • 2014年06月03日 10:10
  • 495

排序推荐算法

最近在思考自己一直在做的一个project,我希望能够改变现有思路,进行优化。本来想可能multiracial logistic regression会合适,但是看了看,觉得不合适。我想要的是一种多种...

360方案 相关技术(推荐、排序、点击率预估)

这篇主要总结一下做的方案用到的推荐系统、排序学习和点击率预估的相关技术。个性化推荐算法和模型推荐方法是整个推荐系统中最为核心的部分,推荐方法的好坏在很大程度上决定了推荐系统性能的优劣。因此,国内外对于...

5类系统推荐算法

最近因为PAC平台自动化的需求,开始探坑推荐系统。这个乍一听去乐趣无穷的课题,对于算法大神们来说是这样的:     而对于刚接触这个领域的我来说,是这样的:   ...

160824--推荐系统中的排序学习

1、推荐系统 2、排序学习 2.1排序算法分类 2.2存在的问题 2.3解决方案 3、总结...

Top K问题——基于快速排序

一、简介所谓的Top K问题其实就是找数组中最大的前k个值。为此,只要我们能够找到数组中的第k大值,那么Top K问题就会迎刃而解。在此声明一下,本文写的方法肯定不是最好的。不过最近看了几个题,其核心...
  • jnulzl
  • jnulzl
  • 2016年03月26日 22:55
  • 2452

top-K问题详解

top-K 问题是一类经典的问题,它能解决许多海量数据处理相关的问题,例如在1亿个ip中找出访问次数前1000的ip,在海量搜索字符串中找出搜索频率排在前十的搜索字符串等等。下面我们由浅入深对其进行分...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:从分类,排序,top-k多个方面对推荐算法稳定性的评价
举报原因:
原因补充:

(最多只允许输入30个字)