深入浅出LDA(3)

0. 阅读说明

与LDA紧密相关的必要且最小知识集合为博文的正文。凡是灰色框中的内容为拓展和补充内容,直接跳过并不会影响你的理解。灰色框指的是如下形式的段落:

这是一个灰色框示意段落
这部分内容为补充性内容,直接跳过并不会影响你的理解

1. 前几节的一点小尾巴

在第一节中,我们从二项分布推导Gamma 分布的时候,使用了如下的等式:

P(Ck)=n!k!(nk1)!1ptk(1t)nk1dt,CB(n,p)

现在大家可以看到,左边是二项分布的概率累积,右边实际上是 β(t|k+1,nk) 分布的概率积分。这个式子之前并没有给出证明,下面我们进行证明
我们可以如下构造二项分布,取随机变量 看 X1,X2,,XniidUniform(0,1) ,一个成功的贝努利实验就是 Xi<p ,否则表示失败,于是成功的概率为 p 用于计数成功的次数,于是CB(n,p)

这里写图片描述

显然我们有如下式子成立:
P(Ck)=P(X(k+1)>p)

此处 X(k+1) 是顺序统计量,为第 k+1 大的数。等式左边表示贝努利实验成功次数最多 k 次,右边表示第 k+1大的数必然对应于失败的贝努利实验,从而失败次数最少是 nk 次,所以左右两边是等价的。由于 X(k+1)Beta(t|k+1,nk) , 于是
P(Ck)=P(X(k+1)>p)=1pBeta(t|k+1,nk)dt=n!k!(nk1)!1ptk(1t)nk1dt

以上证明内容来自:LDA-math-认识Beta/Dirichlet分布(2)


2. Dirichlet分布

2.1 回顾 β 分布

这里写图片描述

此时 X(k) 的分布即为 β 分布

2.2 Dirichlet分布

这里写图片描述
此即为Dirichlet分布


2.2.1 Dirichlet分布推导

以下内容来自:
LDA-math-认识Beta/Dirichlet分布(3)

这里写图片描述
这里写图片描述
这里写图片描述


这里写图片描述


2.2.2 β 分布与Dirichlet分布

β 分布可以看作Dirichlet分布在二维时的特例。
这里写图片描述


这里写图片描述


2.3 如何更好的理解这个分布?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值