Ugly Number II(求第N个丑数)

本文深入探讨了如何通过迭代算法找出指定范围内所有丑数的方法,丑数仅包含2,3,5这三个质因数。通过分组和最小值选择策略,实现高效计算。附上C++代码实例,清晰展示解题过程。

这个应该是微软的一道面试题,首先需要明白丑数的概念。1是一个特殊的丑数,其次只含有2,3,5质因数的数被定义为丑数。
关于解题的思路可以参考:
http://www.geeksforgeeks.org/ugly-numbers/
1到N的丑数为 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, … ;
可以分成如下三组:

(1) 1×2, 2×2, 3×2, 4×2, 5×2, …
(2) 1×3, 2×3, 3×3, 4×3, 5×3, …
(3) 1×5, 2×5, 3×5, 4×5, 5×5, …

只需要保证每次迭代的过程中选取最小的丑数(或者说是质因数),可以理解为后面的数字是前面的数组针对2,3,5的乘积。
C++可以AC的代码如下:

    //求三个数的最小值
    int min(int a, int b, int c){
        int minNum = a > b ? b : a;
        return minNum > c ? c : minNum;
    }
    //求第N个丑数
    int nthUglyNumber(int n) {
        int *ugly = new int[n];
        memset(ugly, 0, sizeof(int) * n);
        ugly[0] = 1;

        int factor2 = 2, factor3 = 3, factor5 = 5;
        int index2, index3, index5;
        index2 = index3 = index5 = 0;

        for(int i=1; i<n; i++){
            int minNum = min(factor2, factor3, factor5);
            ugly[i] = minNum;

            if(factor2 == minNum)
                 factor2 = 2 * ugly[++index2];
            if(factor3 == minNum)
                 factor3 = 3 * ugly[++index3];
            if(factor5 == minNum)
                 factor5 = 5 * ugly[++index5];
        }

        return ugly[n-1];
    }
在Python中实现寻找丑数的函数,可以利用动态规划的思想。丑数的定义是只包含质因子2、3和5的正整数,且通常1被认为是第一个丑数。根据题目的思路,每一个新的丑数都是由之前的某个丑数乘以2、3或5得到的。因此,我们可以维护三个指针,分别对应乘以2、乘以3和乘以5的情况,每次迭代选出这三个数中的最小值作为下一个丑数,同时更新指针。以下是具体的实现步骤和代码: 参考资源链接:[剑指Offer:丑数(Python)](https://wenku.csdn.net/doc/64530762fcc539136803da9f?spm=1055.2569.3001.10343) 1. 初始化一个数组用于存储丑数,首先存入第一个丑数1。 2. 初始化三个指针i2、i3、i5,分别表示当前乘以2、乘以3、乘以5的丑数在数组中的位置,初始值为0。 3. 初始化变量nextUglyNumber为第一个丑数1。 4. 对于第n个丑数,从nextUglyNumber开始,进行以下步骤直到找到第n个丑数: a. 计算出数组中乘以2、乘以3、乘以5后的候选丑数。 b. 从这三个候选丑数中选出最小的一个,作为下一个丑数。 c. 更新对应的指针i2、i3、i5,使其指向选出的丑数在数组中的位置。 d. 更新变量nextUglyNumber为选出的最小丑数。 5. 返回第n个丑数。 下面是根据上述步骤实现的Python函数: ```python def nthUglyNumber(n): if n <= 0: return 0 ugly_numbers = [1] i2 = i3 = i5 = 0 next_ugly = 1 for _ in range(1, n): next_ugly = min(ugly_numbers[i2] * 2, ugly_numbers[i3] * 3, ugly_numbers[i5] * 5) ugly_numbers.append(next_ugly) if next_ugly == ugly_numbers[i2] * 2: i2 += 1 if next_ugly == ugly_numbers[i3] * 3: i3 += 1 if next_ugly == ugly_numbers[i5] * 5: i5 += 1 return ugly_numbers[-1] ``` 以上代码定义了一个函数nthUglyNumber,通过动态规划的方式计算第n个丑数。该实现方式简洁高效,能够直接解决问题。 结合问题及辅助资料,建议在阅读《剑指Offer:丑数(Python)》一书时,特别关注其中关于动态规划和问题解决策略的讲解。书中的题目和解答将帮助你更深入地理解丑数问题,并掌握如何使用动态规划解决此类问题。当理解了动态规划的基础概念后,你可以尝试解决更复杂的编程挑战,进一步提升你的编程能力。 参考资源链接:[剑指Offer:丑数(Python)](https://wenku.csdn.net/doc/64530762fcc539136803da9f?spm=1055.2569.3001.10343)
评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值