字符串匹配的KMP算法(通俗易懂版)

转载 2015年07月06日 21:01:15

 字符串匹配是计算机的基本任务之一。

  举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD"?

  许多算法可以完成这个任务,Knuth-Morris-Pratt算法(简称KMP)是最常用的之一。它以三个发明者命名,起头的那个K就是著名科学家Donald Knuth。

  这种算法不太容易理解,网上有很多解释,但读起来都很费劲。直到读到Jake Boxer的文章,我才真正理解这种算法。下面,我用自己的语言,试图写一篇比较好懂的KMP算法解释。

  1.

  首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。

  2.

  因为B与A不匹配,搜索词再往后移。

  3.

  就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。

  4.

  接着比较字符串和搜索词的下一个字符,还是相同。

  5.

  直到字符串有一个字符,与搜索词对应的字符不相同为止。

  6.

  这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重比一遍。

  7.

  一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。

  8.

  怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,这里只要会用就可以了。

  9.

  已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:

  移动位数 = 已匹配的字符数 - 对应的部分匹配值

  因为 6 - 2 等于4,所以将搜索词向后移动4位。

  10.

  因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移2位。

  11.

  因为空格与A不匹配,继续后移一位。

  12.

  逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动4位。

  13.

  逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动7位,这里就不再重复了。

  14.

  下面介绍《部分匹配表》是如何产生的。

  首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。

  15.

  "部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例,

  - "A"的前缀和后缀都为空集,共有元素的长度为0;

  - "AB"的前缀为[A],后缀为[B],共有元素的长度为0;

  - "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;

  - "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;

  - "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;

  - "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;

  - "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。

  16.

  "部分匹配"的实质是,有时候,字符串头部和尾部会有重复。比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。搜索词移动的时候,第一个"AB"向后移动4位(字符串长度-部分匹配值),就可以来到第二个"AB"的位置。

字符串匹配KMP算法C++代码实现

看到了一篇关于《字符串匹配的KMP算法》(见下文)的介绍,地址:http://www.ruanyifeng.com/blog/2013/05/Knuth%E2%80%93Morris%E2%80%93...
  • gdly2010
  • gdly2010
  • 2016年10月30日 10:21
  • 1640

史上最浅显易懂的KMP算法讲解:字符串匹配算法

KMP算法是一种改进后的字符串匹配算法,由D.E.Knuth与V.R.Pratt和J.H.Morris同时发现,因此人们称它为克努特-莫里斯-普拉特操作(简称KMP算法)。 KMP算法又称“看毛片”算...
  • wangbaochu
  • wangbaochu
  • 2016年02月18日 20:32
  • 10309

KMP字符串匹配(初学者必看,讲的很清晰)

从头到尾彻底理解KMP 首先声明一下,本博文转自July的博客,之前看了很多关于KMP算法的博客,发现都没讲清楚,但看了July的博客后,我就对KMP算法有了一个很清楚的...
  • luoshengkim
  • luoshengkim
  • 2015年03月29日 10:34
  • 3026

蛮力法之串匹配问题---kmp算法中真/后缀作用及next数组计算

在源串S中搜索目标串T时,利用串匹配的暴力求解方法,在求解的过程中,我们分析得到简化该问题求解过程的关键步骤,也即kmp算法的核心思想:如何在某趟S[i]和T[j]匹配失败时,下标i不回溯,下标j回溯...
  • tterminator
  • tterminator
  • 2015年12月10日 00:19
  • 678

<C/C++算法>字符串匹配---KMP算法

KMP算法是一种改进的字符串匹配算法,由D.E.Knuth,J.H.Morris和V.R.Pratt同时发现,因此人们称它为克努特——莫里斯——普拉特操作(简称KMP算法)。KMP算法的关键是利用匹配...
  • EbowTang
  • EbowTang
  • 2015年10月14日 19:14
  • 5899

KMP算法(字符串匹配算法)详解及java实现

KMP算法是BF(Brute Force)算法的一种改进算法,什么是BF算法这里不多做解释。 1.KMP算法实现思路:   每当一趟匹配过程中出现字符比较不等时,不需要回溯主串上面的指针i,而是...
  • syy0377
  • syy0377
  • 2013年12月16日 15:25
  • 4306

算法系列——字符串匹配朴素算法和KMP算法

字符串匹配算法主要是两类,最基本的暴力解法,也叫做朴素算法,另一种是KMP算法。本篇给出两种算法的最简单化的写法,便于面试时记忆和书写,当然重点还是理解其算法思想。朴素匹配算法被搜索的字符串称为主串,...
  • ylyg050518
  • ylyg050518
  • 2017年12月17日 15:24
  • 233

ACM-字符串-模式串匹配-KMP算法

KMP
  • u011787119
  • u011787119
  • 2016年01月17日 22:23
  • 1636

KMP算法解决字符串匹配

该算法由D.E.Knuth ,J.H.Morris和 V.R.Pratt提出,用于解决字符串匹配问题。思想:设目标串(主串)为s,模式串为t ,并设i指针和j指针分别指示目标串和模式串中正待比较的字符...
  • barry283049
  • barry283049
  • 2015年08月27日 20:47
  • 737

字符串匹配的KMP算法和朴素算法,及其python实现

KMP算法部分转载自阮一峰博客《字符串匹配的KMP算法》 原贴地址:http://www.ruanyifeng.com/blog/2013/05/Knuth%E2%80%93Morris%E2%80%...
  • chinwuforwork
  • chinwuforwork
  • 2016年07月18日 10:35
  • 1230
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:字符串匹配的KMP算法(通俗易懂版)
举报原因:
原因补充:

(最多只允许输入30个字)