关闭
当前搜索:

NMF算法简介及python实现

基本原理 NMF,非负矩阵分解,它的目标很明确,就是将大矩阵分解成两个小矩阵,使得这两个小矩阵相乘后能够还原到大矩阵。而非负表示分解的矩阵都不包含负 值。 从应用的角度来说,矩阵分解能够用于发现两种实体间的潜在特征,一个最常见的应用就是协同过滤中的预测打分值,而从协同过滤的这个角度来说,非负也很容易 理解:打分都是正的,不会出现负值。 在例如Netflix或MovieLens这样的推荐...
阅读(438) 评论(0)

白话NMF(Non-negative Matrix Factorization)——Matlab 实现

NMF——非负矩阵分解。如果你事先了解PMF[概率矩阵分解]的话,那么其实只要在PMF的基础上多加上一点,就是NMF了。   方法一:  在PMF中使用SGD【随机梯度下降】进行优化时,使用如下的迭代公式:       其中P、Q分别代表原始矩阵R的两个维度的隐含矩阵,在推荐应用中,一般讲P看做用户矩阵、Q看做物品矩阵。   从公式中不...
阅读(443) 评论(1)
    个人资料
    • 访问:412784次
    • 积分:6241
    • 等级:
    • 排名:第4457名
    • 原创:246篇
    • 转载:68篇
    • 译文:3篇
    • 评论:41条