NMF算法简介及python实现

基本原理 NMF,非负矩阵分解,它的目标很明确,就是将大矩阵分解成两个小矩阵,使得这两个小矩阵相乘后能够还原到大矩阵。而非负表示分解的矩阵都不包含负 值。 从应用的角度来说,矩阵分解能够用于发现两种实体间的潜在特征,一个最常见的应用就是协同过滤中的预测打分值,而从协同过滤的这个角度来说,非负也很...

2016-11-19 13:33:51

阅读数:650

评论数:0

白话NMF(Non-negative Matrix Factorization)——Matlab 实现

NMF——非负矩阵分解。如果你事先了解PMF[概率矩阵分解]的话,那么其实只要在PMF的基础上多加上一点,就是NMF了。   方法一:  在PMF中使用SGD【随机梯度下降】进行优化时,使用如下的迭代公式:       其中P、Q分别代表原始矩阵R...

2016-11-19 11:38:11

阅读数:823

评论数:1

提示
确定要删除当前文章?
取消 删除
关闭
关闭