关闭
当前搜索:

机器学习中的范数规则化之(一)L0、L1与L2范数

机器学习中的范数规则化之(一)L0、L1与L2范数zouxy09@qq.comhttp://blog.csdn.net/zouxy09 参考资料:《机器学习中常常提到的正则化到底是什么意思?》https://www.zhihu.com/question/20924039       今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化。我们先简单的来理解下常用的L0、L1、L2和核范数规则化...
阅读(52) 评论(0)

OpenCV HOGDescriptor 参数图解

HOG的基本理论请参考:http://blog.csdn.net/guyuealian/article/details/71702995最近要做图像特征提取,可能要用下HOG特征,所以研究了下OpenCV的HOG描述子。OpenCV中的HOG特征提取功能使用了HOGDescriptor这个类来进行封装,其中也有现成的行人检测的接口。然而,无论是OpenCV官方说明文档还是各个中英文网站目前都没有这...
阅读(95) 评论(0)

基于匹配的目标识别

如果要在一幅图像中寻找已知物体,最常用且最简单的方法之一就是匹配。在目标识别的方法中,匹配属于基于决策理论方法的识别。匹配方法可以是最小距离分类器,相关匹配。本文code是基于最小距离分类器,基于相关匹配的与此类似。本文涉及到的知识点如下:1、目标识别.2、基于决策理论方法的识别3、匹配(最小距离分类器、相关匹配)4、空间相关(相关匹配涉及)匹配之前,需要先将图像转换为灰度图,函数为rgb2gra...
阅读(465) 评论(0)

基于空间相关的图像模板匹配及MATLAB实现

应用背景:机器的模式识别所要解决的问题,就是用机器代替人去认识图像和找出一幅图像中人们感兴趣的目标物。如何找到目标物即图像的区域呢,这里介绍在空间域使用模板在图像中寻找与模板匹配的区域。基本原理:在空间滤波中,相关是指滤波器模板移过图像并计算每个像素位置的灰度乘积之和的过程。基于相关的图像模板匹配过程类似于滤波过程,设图像f(x,y)的大小为M*N和模板子图像w(x,y)的大小为J*K,则f与w的...
阅读(1053) 评论(0)

[置顶] Adaboost算法原理分析和实例+代码(简明易懂)

Adaboost算法原理分析和实例+代码(简明易懂) ,Adaboost算法优点和缺点,Adaboost算法代码,Adaboost基本原理,Adaboost的例子和代码,详细分析Adaboost算法,Adaboost实现过程。 (1)Adaboost提供一种框架,在框架内可以使用各种方法构建子分类器。可以使用简单的弱分类器,不用对特征进行筛选,也不存在过拟合的现象。 (2)Adaboost算法不需要弱分类器的先验知识,最后得到的强分类器的分类精度依赖于所有弱分类器。无论是应用于人造数据还是真...
阅读(9555) 评论(15)

协方差矩阵和散布矩阵(散度矩阵)的意义

在机器学习模式识别中,经常需要应用到协方差矩阵C和散布矩阵S。如在PCA主成分分析中,需要计算样本的散度矩阵,有的论文是计算协方差矩阵。实质上二者意义差不多,散布矩阵(散度矩阵)前乘以系数1/(n-1)就可以得到协方差矩阵了。在模式识别的教程中,散布矩阵也称为散度矩阵,有的也称为类内离散度矩阵或者类内离差阵,用一个等式关系可表示为:散度矩阵=类内离散度矩阵=类内离差阵=协方差矩阵×(n-1)。样本的协方差矩阵乘以n-1倍即为散布矩阵,n表示样本的个数,散布矩阵的大小由特征维数d决定,是一个为d×d 的半正定...
阅读(976) 评论(0)

[置顶] 协方差矩阵和散布矩阵(散度矩阵)的意义

协方差矩阵和散布矩阵的意义 在机器学习模式识别中,经常需要应用到协方差矩阵C和散布矩阵S。如在PCA主成分分析中,需要计算样本的散度矩阵,有的论文是计算协方差矩阵。实质上二者意义差不多,散布矩阵(散度矩阵)前乘以系数1/(n-1)就可以得到协方差矩阵了。 在模式识别的教程中,散布矩阵也称为散度矩阵,有的也称为类内离散度矩阵或者类内离差阵,用一个等式关系可表示为: 关系:散度矩阵=类内离散度矩阵=类内离差阵=协方差矩阵×(n-1) 样本的协方差矩阵乘以n-1倍即为散布矩阵,n表示样本...
阅读(4478) 评论(0)

[置顶] PCA原理分析和Matlab实现方法(三)

PCA主成分分析原理分析和Matlab实现方法(三) PCA算法主要用于降维,就是将样本数据从高维空间投影到低维空间中,并尽可能的在低维空间中表示原始数据。PCA的几何意义可简单解释为: 0维-PCA:将所有样本信息都投影到一个点,因此无法反应样本之间的差异;要想用一个点来尽可能的表示所有样本数据,则这个点必定是样本的均值。 1维-PCA:相当于将所有样本信息向样本均值的直线投影; 2维-PCA:将样本的平面分布看作椭圆形分布,求出椭圆形的长短轴方向,然后将样本信息投...
阅读(5208) 评论(0)

PCA原理分析和意义(二)

原文链接:http://blog.csdn.net/xl890727/article/details/16898315 在进行图像的特征提取的过程中,提取的特征维数太多经常会导致特征匹配时过于复杂,消耗系统资源,不得不采用特征降维的方法。所谓特征降维,即采用一个低纬度的特征来表示高纬度。特征降维一般有两类方法:特征选择和特征抽取。特征选择即从高纬度的特征中选择其中的一个子集来作为新的特征...
阅读(765) 评论(0)

PCA原理分析和意义(一)

原文链接:http://blog.codinglabs.org/articles/pca-tutorial.html PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维。网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲...
阅读(1228) 评论(0)

解决Warning: NEWFF used in an obsolete way. See help for NEWFF to update calls to the new argument li

解决Warning: NEWFF used in an obsolete way.  【转载请注明出处】http://blog.csdn.net/guyuealian/article/details/53954005      使用Matlab工具箱创建神经网络时,需要用到newff函数,但若使用旧版本的newff函数,会造成下面的警告: > net = newff( minmax(...
阅读(2535) 评论(1)

复旦大学吴立德《数值优化》、《深度学习》和

http://i.youku.com/i/UNjAzMzA4NjQ=/playlists?spm=a2hzp.8253869.0.0 【1】复旦大学吴立德教授讲授的《数值优化》。 使用教材为Nocedal, Jorge, and Stephen Wright. Numerical optimization. Springer Science & Business Media, 2006. ...
阅读(2269) 评论(0)

通俗理解卷积神经网络

通俗理解卷积神经网络(cs231n与5月dl班课程笔记) 原文链接:http://blog.csdn.net/v_july_v/article/details/51812459 1 前言     2012年我在北京组织过8期machine learning读书会,那时“机器学习”非常火,很多人都对其抱有巨大的热情。当我2013年再次来到北京时,有一个词似乎比“机器学习”更...
阅读(567) 评论(0)

点在直线的投影坐标 n维向量投影坐标 几何投影坐标

点在直线的投影坐标 n维向量投影坐标 几何投影坐标 一、点在直线的投影坐标     如下图所示,直线l1:y=kx+b,直线外有一点P(x0, y0),问:点P在直线上的投影坐标为多少呢?      求点P的投影坐标,即是求过点P(x0, y0)的直线l2垂直于直...
阅读(3025) 评论(0)

协方差矩阵的几何解释

A geometric interpretation of the covariance matrix http://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/ 译文:http://demo.netfoucs.com/u010182633/article/details/45937051...
阅读(864) 评论(0)

[置顶] 聚类算法-最大最小距离算法(实例+代码)

最大最小距离算法基本思想 最大最小距离法是模式识别中一种基于试探的类聚算法,它以欧式距离为基础,取尽可能远的对象作为聚类中心。因此可以避免K-means法初值选取时可能出现的聚类种子过于临近的情况,它不仅能智能确定初试聚类种子的个数,而且提高了划分初试数据集的效率。 该算法以欧氏距离为基础,首先初始一个样本对象作为第1个聚类中心,再选择一个与第1个聚类中心最远的样本作为第2个聚类中心,然后确定其他的聚类中心,直到无新的聚类中心产生。最后将样本按最小距离原则归入最近的类。 该算法的聚...
阅读(8651) 评论(8)

张志华教授《机器学习导论》和《统计机器学习》课程讲义

张志华教授《机器学习导论》和《统计机器学习》课程讲义 最近看了上海交大张志华教授的精品课程 《机器学习导论》和《统计机器学习》,觉得讲的很深入,适合学习机器学习和深度学习的研究者深入学习,张教授讲的比较偏向理论,需要一定的数学基础。 至于广大网友最关心的课程讲义和配套教材书籍,鄙人邮件详问过张教授,他说“目前只有学生记录下来的讲义,没有专门的教材”,张教授还好心留下讲义的下载链接:http://bcmi.sjtu.edu.cn/log/courses.html ,这也是他的个人主页,讲义...
阅读(8024) 评论(13)

《机器学习导论》和《统计机器学习》学习资料:张志华教授

张志华教授的两门机器学习公开课是很好的机器学习资源。但在上海交大的公开课视频网站上挂出的教学视频顺序有点乱。对于初学者来说,如果没看对顺序的话,会觉得讲得很乱,从而错过这么优质的资源。事实上板书很完整,有电子版讲义可下载。只是讲义上有个别地方有点笔误,但不影响理解。能用黑板直接推导的老师的逻辑和思路都是很清晰的!...
阅读(3445) 评论(9)

最小错误率贝叶斯决策

原文链接:http://blog.csdn.net/angel_yuaner/article/details/47042817  在一般的模式识别问题中,人们的目标往往是尽量减少分类的错误,追求最小的错误率。根据之前的文章,即求解一种决策规则,使得: minP(e)=∫P(e|x)p(x)dx 这就是最小错误率贝叶斯决策。 在上式中,P(e|x)≥0,p(x)≥0对...
阅读(325) 评论(0)

简单理解:ML、DB、NLP

这段话引用了很多次:         事实上,如果我们把人工智能相关的技术以及其他业界的技术做一个类比,就可以发现机器学习在人工智能中的重要地位不是没有理由的。        人类区别于其他物体,植物,动物的最主要区别,作者认为是“智慧”。而智慧的最佳体现是什么?        是计算能力么,应该不是,心算速度快的人我们一般称之为天才。        是反应能力么,也不是,...
阅读(495) 评论(0)
27条 共2页1 2 下一页 尾页
    个人资料
    • 访问:504183次
    • 积分:5530
    • 等级:
    • 排名:第5607名
    • 原创:105篇
    • 转载:51篇
    • 译文:1篇
    • 评论:165条
    博客专栏
    最新评论