
部署框架
文章平均质量分 92
AI吃大瓜
计算机视觉高级研究员,主要从事人工智能AI算法研究工作;熟悉多模态大模型,RAG技术,小模型开发如人脸检测,人脸识别,活体识别以及2D/3D Pose(人体姿态估计),行人重识别ReID等深度学习开发工作,具有丰富的项目开发工作经验。
展开
-
人体姿态估计(人体关键点检测)2D Pose训练代码和Android源码
目录目录人体姿态估计(人体关键点检测)2D Pose训练代码和Android源码1.人体姿态估计2D Pose方法2.人体姿态估计数据集(1)COCO数据集(2)MPII数据集(3)关键点示意图(ID序号)3.人体(行人)检测4.人体姿态估计训练Pipeline(1)Environment(2)数据准备:COCO和MPII数据集(3)模型训练(4) 测试Demo(5) 检测效果展示5.人体姿态估计模型Android部署(1) 将Pytorch模型转换ONNX模型(2) 将ONNX模型转换为TNN模型(3)原创 2022-08-12 18:53:51 · 24075 阅读 · 22 评论 -
行人检测和人脸检测和人脸关键点检测(C++/Android源码)
考虑到人脸人体检测的需求,本人开发了一套轻量化的,高精度的,可实时的人脸/人体检测Android Demo,主要支持功能如下:支持人脸检测算法模型支持人脸检测和人脸关键点检测(5个人脸关键点)算法模型支持人体检测(行人检测)算法模型支持人脸和人体同时检测算法模型所有算法模型都使用C++开发,推理框架采用TNN,Android通过JNI接口进行算法调用;所有算法模型都可在普通Android手机实时跑,在普通Android手机,CPU和GPU都可以达到实时检测的效果(CPU约25毫秒左右,GPU约1原创 2022-06-18 17:47:49 · 6942 阅读 · 14 评论 -
Pytorch基础训练库Pytorch-Base-Trainer(支持模型剪枝 分布式训练)
考虑到深度学习训练过程都有一套约定成俗的流程,鄙人借鉴Keras开发了一套基础训练库: Pytorch-Base-Trainer(PBT); 这是一个基于Pytorch开发的基础训练库,支持以下特征:原创 2022-01-24 11:09:40 · 12386 阅读 · 12 评论 -
深度学习端上部署工具
深度学习端上部署工具tvm caffe2 pytorch-mobile tf-lite paddle-lite tensorRT ncnn(腾讯) mace(小米) mnn(阿里)tf-lite tensorflow,开源 tesnorflow checkpoint/bp/fronzen graph Android/ios/arm64 通用性最强,与 tensorflow 适配完美,不过性能一般 roadmap 中预计年底将实现对..原创 2021-12-14 14:15:48 · 856 阅读 · 0 评论 -
人脸检测+人体检测C++ Android项目
人脸检测+人体检测C++ Android实现本博客将实现C++版本的人脸检测,人脸关键点检测,人体检测,人脸+人体检测,推理框架采用TNN,在普通Android手机,CPU和GPU都可以达到实时检测的效果人脸检测+人脸关键点检测+人体检测Android Demo APP(非源码,仅供学习交流)链接: https://pan.baidu.com/s/1By43I1DbMa0gBPLObtPZMQ 提取码: msnr尊重原创,转载请注明出处:https://panjinquan.blog..原创 2021-10-10 18:04:58 · 10192 阅读 · 4 评论 -
RKNN Toolkit使用教程
RKNN Toolkit使用教程RKNN Toolkit:http://wiki.t-firefly.com/zh_CN/Core-1808-JD4/npu_rknn_toolkit.html#Rockchip提供RKNN-Toolkit开发套件进行模型转换、推理运行和性能评估。用户通过提供的 python 接口可以便捷地完成以下功能:1)模型转换:支持 Caffe、Tensorflow、TensorFlow Lite、ONNX、Darknet 模型,支持RKNN 模型导入导出,后...原创 2021-02-22 14:15:53 · 14837 阅读 · 4 评论 -
TNN API说明文档
TNN API说明文档TNN:https://github.com/Tencent/TNN说明文档:https://github.com/Tencent/TNN/blob/master/doc/cn/user/api.md目录TNN API说明文档一、API兼容性二、API调用简介步骤1. 模型解析步骤2. 网络构建步骤3. 输入设定步骤4. 输出获取二、API详解API目录结构1. core/macro.h2. core/common.h3.原创 2020-12-16 16:17:09 · 2753 阅读 · 0 评论 -
TNN MatConvertParam参数scale和bias设置
TNN MatConvertParam参数设置实验TNN进行模型推理前,需要进行必要的预处理,如下设置TNN_NS::MatConvertParam inputCvtParam的scale和bias两个参数值 /*** Read image ***/ cv::Mat orig_image = cv::imread(IMAGE_NAME); int imageWidth = orig_image.size[1]; int imageHeight = orig_image原创 2020-12-16 16:01:42 · 1340 阅读 · 0 评论