Java并发52:并发集合系列-基于独占锁+二叉树最小堆实现的单向阻塞无界优先级队列PriorityBlockingQueue

本文深入解析了PriorityBlockingQueue的工作原理及其实现细节,包括其内部结构、主要操作流程(如offer、poll、put等),以及如何通过二叉树最小堆算法维护内部数组,确保每次出队都是优先级最高的元素。
摘要由CSDN通过智能技术生成

[超级链接:Java并发学习系列-绪论]
[系列序章:Java并发43:并发集合系列-序章]


原文地址:http://www.importnew.com/25541.html

一、 前言

PriorityBlockingQueue是带优先级的无界阻塞队列,每次出队都返回优先级最高的元素,是二叉树最小堆的实现,研究过数组方式存放最小堆节点的都知道,直接遍历队列元素是无序的。

二、 PriorityBlockingQueue类图结构

这里写图片描述

如图PriorityBlockingQueue内部:

  • 有个数组queue用来存放队列元素,
  • size用来存放队列元素个数,
  • allocationSpinLockOffset是用来在扩容队列时候做cas的,目的是保证只有一个线程可以进行扩容。
  • 由于这是一个优先级队列所以有个比较器comparator用来比较元素大小。
  • lock独占锁对象用来控制同时只能有一个线程可以进行入队出队操作。
  • notEmpty条件变量用来实现take方法阻塞模式。
  • 这里没有notFull 条件变量是因为这里的put操作是非阻塞的,为啥要设计为非阻塞的是因为这是无界队列。
  • 最后PriorityQueue q用来搞序列化的。

如下构造函数,默认队列容量为11,默认比较器为null;

private static final int DEFAULT_INITIAL_CAPACITY = 11;


public PriorityBlockingQueue() {
   this(DEFAULT_INITIAL_CAPACITY, null);
}

public PriorityBlockingQueue(int initialCapacity) {
    this(initialCapacity, null);
}

public PriorityBlockingQueue(int initialCapacity,
                             Comparator<? super E> comparator) {
    if (initialCapacity < 1)
        throw new IllegalArgumentException();
    this.lock = new ReentrantLock();
    this.notEmpty = lock.newCondition();
    this.comparator = comparator;
    this.queue = new Object[initialCapacity];
}

三、 offer操作

在队列插入一个元素,由于是无界队列,所以一直为成功返回true;

public boolean offer(E e) {

    if (e == null)
        throw new NullPointerException();
    final ReentrantLock lock = this.lock;
    lock.lock();
    int n, cap;
    Object[] array;

    //如果当前元素个数>=队列容量,则扩容(1)
    while ((n = size) >= (cap = (array = queue).length))
        tryGrow(array, cap);


    try {
        Comparator<? super E> cmp = comparator;

        //默认比较器为null
        if (cmp == null)(2)
            siftUpComparable(n, e, array);
        else
            //自定义比较器(3)
            siftUpUsingComparator(n, e, array, cmp);

        //队列元素增加1,并且激活notEmpty的条件队列里面的一个阻塞线程
        size = n + 1;(9)
        notEmpty.signal();
    } finally {
        lock.unlock();
    }
    return true;
}

主流程比较简单,下面看看两个主要函数

private void tryGrow(Object[] array, int oldCap) {
    lock.unlock(); //must release and then re-acquire main lock
    Object[] newArray = null;

    //cas成功则扩容(4)
    if (allocationSpinLock == 0 &&
        UNSAFE.compareAndSwapInt(this, allocationSpinLockOffset,
                                 0, 1)) {
        try {
            //oldGap<64则扩容新增oldcap+2,否者扩容50%,并且最大为MAX_ARRAY_SIZE
            int newCap = oldCap + ((oldCap < 64) ?
                                   (oldCap + 2) : // grow faster if small
                                   (oldCap >> 1));
            if (newCap - MAX_ARRAY_SIZE > 0) {    // possible overflow
                int minCap = oldCap + 1;
                if (minCap < 0 || minCap > MAX_ARRAY_SIZE)
                    throw new OutOfMemoryError();
                newCap = MAX_ARRAY_SIZE;
            }
            if (newCap > oldCap && queue == array)
                newArray = new Object[newCap];
        } finally {
            allocationSpinLock = 0;
        }
    }

    //第一个线程cas成功后,第二个线程会进入这个地方,然后第二个线程让出cpu,尽量让第一个线程执行下面点获取锁,但是这得不到肯定的保证。(5)
    if (newArray == null) // back off if another thread is allocating
        Thread.yield();
    lock.lock();(6)
    if (newArray != null && queue == array) {
        queue = newArray;
        System.arraycopy(array, 0, newArray, 0, oldCap);
    }
}

tryGrow目的是扩容,这里要思考下为啥在扩容前要先释放锁,然后使用cas控制只有一个线程可以扩容成功。

我的理解是为了性能,因为扩容时候是需要花时间的,如果这些操作时候还占用锁那么其他线程在这个时候是不能进行出队操作的,也不能进行入队操作,这大大降低了并发性。

所以在扩容前释放锁,这允许其他出队线程可以进行出队操作,但是由于释放了锁,所以也允许在扩容时候进行入队操作,这就会导致多个线程进行扩容会出现问题。

所以这里使用了一个spinlock用cas控制只有一个线程可以进行扩容,失败的线程调用Thread.yield()让出cpu,目的意在让扩容线程扩容后优先调用lock.lock重新获取锁,但是这得不到一定的保证,有可能调用Thread.yield()的线程先获取了锁。

那copy元素数据到新数组为啥放到获取锁后面那?

原因应该是因为可见性问题,因为queue并没有被volatile修饰。

另外有可能在扩容时候进行了出队操作,如果直接拷贝可能看到的数组元素不是最新的。

而通过调用Lock后,获取的数组则是最新的,并且在释放锁前 数组内容不会变化。

具体建堆算法:

private static <T> void siftUpComparable(int k, T x, Object[] array) {
    Comparable<? super T> key = (Comparable<? super T>) x;

    //队列元素个数>0则判断插入位置,否者直接入队(7)
    while (k > 0) {
        int parent = (k - 1) >>> 1;
        Object e = array[parent];
        if (key.compareTo((T) e) >= 0)
            break;
        array[k] = e;
        k = parent;
    }
    array[k] = key;(8)
}

四、 poll操作

在队列头部获取并移除一个元素,如果队列为空,则返回null

public E poll() {
    final ReentrantLock lock = this.lock;
    lock.lock();
    try {
        return dequeue();
    } finally {
        lock.unlock();
    }
}

主要看dequeue

private E dequeue() {

    //队列为空,则返回null
    int n = size - 1;
    if (n < 0)
        return null;
    else {


        //获取队头元素(1)
        Object[] array = queue;
        E result = (E) array[0];

        //获取对尾元素,并值null(2)
        E x = (E) array[n];
        array[n] = null;

        Comparator<? super E> cmp = comparator;
        if (cmp == null)//cmp=null则调用这个,把对尾元素位置插入到0位置,并且调整堆为最小堆(3)
            siftDownComparable(0, x, array, n);
        else
            siftDownUsingComparator(0, x, array, n, cmp);
        size = n;(4return result;
    }
}
private static <T> void siftDownComparable(int k, T x, Object[] array,
                                            int n) {
     if (n > 0) {
         Comparable<? super T> key = (Comparable<? super T>)x;
         int half = n >>> 1;           // loop while a non-leaf
         while (k < half) {
             int child = (k << 1) + 1; // assume left child is least
             Object c = array[child];(5int right = child + 1;(6)
             if (right < n &&
                 ((Comparable<? super T>) c).compareTo((T) array[right]) > 0)(7)
                 c = array[child = right];
             if (key.compareTo((T) c) <= 0)(8)
                 break;
             array[k] = c;
             k = child;
         }
         array[k] = key;(9)
     }
 }

五、 put操作

内部调用的offer,由于是无界队列,所以不需要阻塞

public void put(E e) {
    offer(e); // never need to block
}

六、 take操作

获取队列头元素,如果队列为空则阻塞。

public E take() throws InterruptedException {
    final ReentrantLock lock = this.lock;
    lock.lockInterruptibly();
    E result;
    try {

        //如果队列为空,则阻塞,把当前线程放入notEmpty的条件队列
        while ( (result = dequeue()) == null)
            notEmpty.await();
    } finally {
        lock.unlock();
    }
    return result;
}

这里是阻塞实现,阻塞后直到入队操作调用notEmpty.signal 才会返回。

七、 size操作

获取队列元个数,由于加了独占锁所以返回结果是精确的

public int size() {
    final ReentrantLock lock = this.lock;
    lock.lock();
    try {
        return size;
    } finally {
        lock.unlock();
    }
}

八、总结

PriorityBlockingQueue类似于ArrayBlockingQueue内部使用一个独占锁来控制同时只有一个线程可以进行入队和出队。

另外前者只使用了一个notEmpty条件变量而没有notFull这是因为前者是无界队列。

当put时候永远不会处于await所以也不需要被唤醒。

PriorityBlockingQueue始终保证出队的元素是优先级最高的元素,并且可以定制优先级的规则。

内部通过使用一个二叉树最小堆算法来维护内部数组,这个数组是可扩容的,当前元素个数>=最大容量时候会通过算法扩容。

扩容:默认队列容量为11,oldGap<64则扩容新增oldcap+2,否者扩容50%,并且最大为MAX_ARRAY_SIZE。

值得注意的是为了避免在扩容操作时候其他线程不能进行出队操作,实现上使用了先释放锁,然后通过cas保证同时只有一个线程可以扩容成功。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值