彻底理解样本方差为何除以n-1

原创 2017年09月06日 00:10:35

    设样本均值为,样本方差为,总体均值为,总体方差为,那么样本方差有如下公式:


    很多人可能都会有疑问,为什么要除以n-1,而不是n,但是翻阅资料,发现很多都是交代到,如果除以n,对样本方差的估计不是无偏估计,比总体方差要小,要想是无偏估计就要调小分母,所以除以n-1,那么问题来了,为什么不是除以n-2、n-3等等。所以在这里彻底总结一下,首先交代一下无偏估计。

无偏估计

    以例子来说明,假如你想知道一所大学里学生的平均身高是多少,一个大学好几万人,全部统计有点不现实,但是你可以先随机挑选100个人,统计他们的身高,然后计算出他们的平均值,记为。如果你只是把作为整体的身高平均值,误差肯定很大,因为你再随机挑选出100个人,身高平均值很可能就跟刚才计算的不同,为了使得统计结果更加精确,你需要多抽取几次,然后分别计算出他们的平均值,分别记为:然后在把这些平均值,再做平均,记为:,这样的结果肯定比只计算一次更加精确,随着重复抽取的次数增多,这个期望值会越来越接近总体均值,如果满足,这就是一个无偏估计,其中统计的样本均值也是一个随机变量,就是的一个取值无偏估计的意义是:在多次重复下,它们的平均数接近所估计的参数真值。

    介绍无偏估计的意义就是,我们计算的样本方差,希望它是总体方差的一个无偏估计,那么假如我们的样本方差是如下形式:


那么,我们根据无偏估计的定义可得:



    由上式可以看出如果除以n,那么样本方差比总体方差的值偏小,那么该怎么修正,使得样本方差式总体方差的无偏估计呢?我们接着上式继续化简:


到这里得到如下式子,看到了什么?该怎修正似乎有点眉目。

    如果让我们假设的样本方差乘以,即修正成如下形式,是不是可以得到样本方差是总体方差的无偏估计呢?


则:



    因此修正之后的样本方差的期望是总体方差的一个无偏估计,这就是为什么分母为何要除以n-1。


版权声明:本文为博主原创文章,转载需注明出处。 举报

相关文章推荐

Android设计模式学习之观察者模式

观察者模式在实际项目中使用的也是非常频繁的,它最常用的地方是GUI系统、订阅——发布系统等。因为这个模式的一个重要作用就是解耦,使得它们之间的依赖性更小,甚至做到毫无依赖。以GUI系统来说,应用的UI...

关注CSDN程序人生公众号,轻松获得下载积分

关注公众号 在公众号里回复“”秘密“”两个字 返回 http://task.csdn.net/m/task/home?task_id=398 领取奖励 提示:根据公众号里的自动回复,完成...

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

属性动画----把图片渐渐变小不见(主函数MainActivity 页面)(XML布局)(本布局和渐变布局一样)

LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:app="http://schema...

JavaEE 6及以上版本的web.xml问题?

JavaEE 6及以上版本的web.xml问题?MyEclipse JavaEE 6版本开始web.xml突然消失不见?没这回事,只是不太必须而已,有需要的项目可以自行进行添加或在创建项目的时候点击n...

spring集成 JedisCluster 连接 redis3.0 集群

maven依赖: redis.clients jedis 2.8.0 2. 增加spring 配置 ...

Android 图片毛玻璃的实现方法

注:本文的高斯模糊只能显示,如果想要保存模糊后的图片,请参考另一篇文章:http://blog.csdn.net/fan7983377/article/details/51568059 效果...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)