(转)回溯法-算法框架及基础

好,顶

转自http://lilongfei1030.blog.163.com/blog/static/8601528200872081318804/

回溯法其实也是一种搜索算法,它可以方便的搜索解空间。
回溯法解题通常可以从以下三步入手:
1、针对问题,定义解空间
2、确定易于搜索的解空间结构
3、以深度优先的方式搜索解空间,并在搜索的过程中进行剪枝
回溯法通常在解空间树上进行搜索,而解空间树通常有子集树和排列树。
针对这两个问题,算法的框架基本如下:
用回溯法搜索子集合树的一般框架:
Cpp代码 复制代码
  1. void backtrack(int t){   
  2.   if(t n) output(x);   
  3.   else{   
  4.     for(int f(n,t); <= g(n,t);i++){   
  5.           x[t] h(i);   
  6.           if(constraint(t) && bound(t)) backtrack(t+1);   
  7.      }   
  8.   }   
  9. 用回溯法搜索排列树的算法框架:
Cpp代码 复制代码
  1. void backtrack(int t){   
  2.   if(t n) output(x);   
  3.   else{   
  4.     for(int f(n,t); <= g(n,t);i++){   
  5.           swap(x[t],x[i]);   
  6.           if(constraint(t) && bound(t)) backtrack(t+1);   
  7.           swap(x[t],x[i]);    
  8.     }   
  9.   }   
  10.  
void backtrack(int t){
  if(t > n) output(x);
  else{
    for(int i = f(n,t); i <= g(n,t);i++){
          swap(x[t],x[i]);
          if(constraint(t) && bound(t)) backtrack(t+1);
          swap(x[t],x[i]); 
    }
  }
}

其中f(n,t),g(n,t)表示当前扩展结点处未搜索过的子树的起始标号和终止标号,
h(i)表示当前扩展节点处,x[t]第i个可选值。constraint(t)和bound(t)是当前
扩展结点处的约束函数和限界函数。constraint(t)返回true时,在当前扩展结点
x[1:t]取值满足约束条件,否则不满足约束条件,可减去相应的子树。bound(t)返
回的值为true时,在当前扩展结点x[1:x]处取值未使目标函数越界,还需要由backtrack(t+1)
对其相应的子树进一步搜索。
用回溯法其实质上是提供了搜索解空间的方法,当我们能够搜遍解空间时,
显然我们就能够找到最优的或者满足条件的解。这便是可行性的问题, 而效率可以
通过剪枝函数来降低。但事实上一旦解空间的结构确定了,很大程度上时间复杂度
也就确定了,所以选择易于搜索的解空间很重要。
下面我们看看两个最简单的回溯问题,他们也代表了两种搜索类型的问题:子集合问题和
排列问题。
第一个问题:
求集合s的所有子集(不包括空集),我们可以按照第一个框架来写代码:
Cpp代码 复制代码
  1. #include   
  2. using namespace std;   
  3.   
  4. int s[3] {1,3,6};   
  5. int x[3];   
  6. int  3;   
  7. void print(){   
  8.    for(int 0; N; j++)   
  9.     if(x[j] == 1)   
  10.        cout << s[j] << ";   
  11.    cout << endl;   
  12. }   
  13.   
  14. void subset(int i){   
  15.     if(i >= N){   
  16.         print();   
  17.         return;   
  18.     }   
  19.   
  20.     x[i] 1;//搜索右子树   
  21.     subset(i+1);   
  22.     x[i] 0;//搜索左子树   
  23.     subset(i+1);   
  24. }   
  25.   
  26. int main(){   
  27.   subset(0);   
  28.   return 0;   
  29.  
#include
using namespace std;

int s[3] = {1,3,6};
int x[3];
int  N = 3;
void print(){
   for(int j = 0; j < N; j++)
 if(x[j] == 1)
    cout << s[j] << " ";
   cout << endl;
}

void subset(int i){
  if(i >= N){
        print();
     return;
 }

 x[i] = 1;//搜索右子树
 subset(i+1);
 x[i] = 0;//搜索左子树
 subset(i+1);
}

int main(){
  subset(0);
  return 0;
}


下面我们看第二个问题:排列的问题,求一个集合元素的全排列。
我们可以按照第二个框架写出代码:
Cpp代码 复制代码
  1. #include   
  2. using namespace std;   
  3.   
  4. int a[4] {1,2,3,4};   
  5. const int 4;   
  6.   
  7. void print(){   
  8.     for(int 0; N; i++)   
  9.            cout << a[i] << ";   
  10.     cout << endl;   
  11. }   
  12.   
  13. void swap(int *a,int i,int j){   
  14.   int temp;   
  15.   temp a[i];   
  16.   a[i] a[j];   
  17.   a[j] temp;   
  18. }   
  19.   
  20. void backtrack(int i){   
  21.     if(i >= N){   
  22.         print();   
  23.     }   
  24.     for(int i; N; j++){   
  25.         swap(a,i,j);   
  26.         backtrack(i+1);   
  27.         swap(a,i,j);   
  28.     }   
  29. }   
  30.   
  31. int main(){   
  32.   backtrack(0);   
  33.   return 0;   
  34.  
#include
using namespace std;

int a[4] = {1,2,3,4};
const int N = 4;

void print(){
 for(int i = 0; i < N; i++)
     cout << a[i] << " ";
    cout << endl;
}

void swap(int *a,int i,int j){
  int temp;
  temp = a[i];
  a[i] = a[j];
  a[j] = temp;
}

void backtrack(int i){
 if(i >= N){
  print();
 }
 for(int j = i; j < N; j++){
  swap(a,i,j);
  backtrack(i+1);
  swap(a,i,j);
 }
}

int main(){
  backtrack(0);
  return 0;
}

这两个问题很有代表性,事实上有许多问题都是从这两个问题演变而来的。第一个问题,它穷举了所有问题的子集,这是所有第一种类型的基础,第二个问题,它给出了穷举所有排列的方法,这是所有的第二种类型的问题的基础。理解这两个问题,是回溯算法的基础.
下面看看一个较简单的问题:
整数集合s和一个整数sum,求集合s的所有子集su,使得su的元素之和为sum。
这个问题很显然是个子集合问题,我们很容易就可以把第一段代码修改成这个问题的代码:
Cpp代码 复制代码
  1. int sum 10;   
  2. int 0;   
  3. int s[5] {1,3,6,4,2};   
  4. int x[5];   
  5. int  5;   
  6.   
  7. void print(){   
  8.    for(int 0; N; j++)   
  9.     if(x[j] == 1)   
  10.        cout << s[j] << ";   
  11.    cout << endl;   
  12. }   
  13. void sumSet(int i){   
  14.     if(i >= N){   
  15.         if(sum == r) print();   
  16.         return;   
  17.     }   
  18.     if(r sum){//搜索右子树   
  19.       += s[i];   
  20.       x[i] 1;   
  21.       sumSet(i+1);   
  22.       -= s[i];    
  23.     }   
  24.     x[i] 0;//搜索左子树   
  25.     sumSet(i+1);   
  26. }   
  27.   
  28. int main(){   
  29.   sumSet(0);   
  30.   return 0;   
  31.  

                                                        八皇后问题

八皇后问题是一个古老而著名的问题,是回溯算法的典型例题。该问题是十九世纪著名的数学家高斯1850年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上.
问题分析:
第一步 定义问题的解空间
这个问题解空间就是8个皇后在棋盘中的位置.
第二步 定义解空间的结构
可以使用8*8的数组,但由于任意两个皇后都不能在同行,我们可以用数组下标表示
行,数组的值来表示皇后放的列,故可以简化为一个以维数组x[9]。
第三步 以深度优先的方式搜索解空间,并在搜索过程使用剪枝函数来剪枝
根据条件:x[i] == x[k]判断处于同一列
abs(k-i) == abs(x[k]-x[i]判断是否处于同一斜线
我们很容易写出剪枝函数:
Cpp代码 复制代码
  1. bool canPlace(int k){   
  2.     for(int 1; k; i++){   
  •         //判断处于同一列或同一斜线   
  •        if(x[i] == x[k] || abs(k-i) == abs(x[k]-x[i]))              return false;   
  •     }   
  •     return true;   
  •  
bool canPlace(int k){
 for(int i = 1; i < k; i++){
        //判断处于同一列或同一斜线
    if(x[i] == x[k] || abs(k-i) == abs(x[k]-x[i]))          return false;
 }
 return true;
}


然后我们按照回溯框架一,很容易写出8皇后的回溯代码:

Cpp代码 复制代码
  1. void queen(int i){   
  2.     if(i 8){   
  3.         print();   
  4.         return;   
  5.     }   
  6.     for(int 1; <= 8; j++){   
  7.       x[i] j;//记录所放的列   
  8.       if(canPlace(i)) queen(i+1);   
  9.     }   
  10.  
void queen(int i){
 if(i > 8){
  print();
  return;
 }
 for(int j = 1; j <= 8; j++){
   x[i] = j;//记录所放的列
   if(canPlace(i)) queen(i+1);
 }
}


整个代码:

Cpp代码 复制代码
  1. #include<iostream>   
  2. #include<cmath>   
  3. using namespace std;   
  4.   
  5. int x[9];   
  6. void print(){   
  7.     for(int 1; <= 8; i++)   
  8.            cout << x[i] << ";   
  9.     cout << endl;   
  10. }   
  11.   
  12. bool canPlace(int k){   
  13.     for(int 1; k; i++){   
  14.             //判断处于同一列或同一斜线   
  15.        if(x[i] == x[k] || abs(k-i) == abs(x[k]-x[i]))    
  16.            return false;   
  17.     }   
  18.     return true;   
  19. }   
  20.   
  21. void queen(int i){   
  22.     if(i 8){   
  23.         print();   
  24.         return;   
  25.     }   
  26.     for(int 1; <= 8; j++){   
  27.       x[i] j;   
  28.       if(canPlace(i)) queen(i+1);   
  29.     }   
  30. }   
  31.   
  32. int main(){   
  33.   queen(1);   
  34.   return 0;   
  35.  

                                      0-1背包问题

0-1背包问题:给定n种物品和一背包.物品i的重量是wi, 其价值为ui,背包的容量为C.
问如何选择装入背包的物品,使得装入背包中物品的总价值最大?
分析:
0-1背包是子集合选取问题,一般情况下0-1背包是个NP问题.
第一步 确定解空间:装入哪几种物品
第二步 确定易于搜索的解空间结构:
可以用数组p,w分别表示各个物品价值和重量。
用数组x记录,是否选种物品
第三步 以深度优先的方式搜索解空间,并在搜索的过程中剪枝
我们同样可以使用子集合问题的框架来写我们的代码,和前面子集和数问题相差无几。
Cpp代码 复制代码
  1. #include<iostream>   
  2. #include<algorithm>   
  • using namespace std;   
  •   
  • class Knapsack{   
  • public:   
  •     Knapsack(double *pp,double *ww,int nn,double cc){   
  •        pp;   
  •        ww;   
  •        nn;   
  •        cc;   
  •        cw 0;   
  •        cp 0;   
  •        bestp 0;   
  •        new int[n];   
  •        cx new int[n];   
  •     }   
  •   
  •     void knapsack(){   
  •        backtrack(0);   
  •      }   
  •   
  •     void backtrack(int i){//回溯法   
  •         if(i n){   
  •             if(cp bestp){   
  •                bestp cp;   
  •                for(int 0; n; i++)   
  •              x[i] cx[i];   
  •             }   
  •             return;   
  •         }   
  •   
  •         if(cw w[i] <= c){//搜索右子树   
  •           cw += w[i];   
  •           cp += p[i];   
  •           cx[i] 1;   
  •           backtrack(i+1);   
  •           cw -= w[i];   
  •           cp -= p[i];   
  •         }   
  •         cx[i] 0;   
  •         backtrack(i+1);//搜索左子树   
  •     }   
  •   
  •     void printResult(){   
  •        cout << "可以装入的最大价值为:" << bestp << endl;   
  •        cout << "装入的物品依次为:";   
  •        for(int 0; n; i++){   
  •          if(x[i] == 1)   
  •              cout << i+1 << ";   
  •        }   
  •        cout << endl;   
  •     }   
  •   
  • private:   
  •    double *p,*w;   
  •    int n;   
  •    double c;   
  •    double bestp,cp,cw;//最大价值,当前价值,当前重量   
  •    int *x,*cx;   
  • };   
  •   
  • int main(){   
  •   double p[4] {9,10,7,4},w[4] {3,5,2,1};   
  •     Knapsack ks Knapsack(p,w,4,7);   
  •     ks.knapsack();   
  •   ks.printResult();   
  •   return 0;   
  •  

注:

本文章来自:http://fuliang.javaeye.com/blog/164686

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值