
wavelet
不负韶华T
泛爱众 而亲仁 有余力 则学文
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
MATLAB中的wavedec、wrcoef函数简析
小波分解函数:[C,L] = wavedec(X,N,'wname');returns the wavelet decomposition of the signal X at level N, using 'wname'. N must be a strictly positive integer. The output decomposition structure con转载 2017-05-27 02:46:50 · 9100 阅读 · 0 评论 -
Matlab小波包分解后如何求各频带信号的能量值?
clear;clc;n=3;wpname='db3';% [b,a]=butter(8,[5/100 99/100]);% load a1_1-1;load k301_1-4;% Data=filter(b,a,Data);Data=Data-mean(Data);Data=detrend(Data);wpt1=wpdec(Data,n,wpname); %转载 2017-05-30 19:26:05 · 20530 阅读 · 7 评论 -
dwt和wavedec区别
使用小波'wname'对信号X进行单层分解,求得的近似系数存放在数组cA中,细节系数存放在数组cD中 [cA,cD]=dwt(X,’wname’)中返回的cA,cD分别存放是信号的近似和细节 [C,L]=wavedec(X,N,'wname') 利用小波'wname'对信号X进行多层分解 A=appcoef(C,L,'wname',N) 利用小波'wna转载 2017-05-30 21:34:13 · 5496 阅读 · 0 评论 -
对消失矩的理解
转载 2017-05-30 22:15:13 · 1354 阅读 · 0 评论 -
小波变换
一.作业内容(1) 任意给定一离散的1D数字信号(或实际采集1D信号),编成实现Harr小波的一尺度快速分解,画出原始信号及分解后近似分量及细节分量图。 (2)利用上述分解得到的近似分量和细节分量,进行Harr小波反变换,即重构信号。画出重构信号的曲线。 (3)计算重构信号与原始信号的残差,画出残差曲线示意图,并对残差曲线作进一步分析。二.作业分析1.任意给转载 2017-05-30 22:17:25 · 3098 阅读 · 0 评论 -
有关小波的几个术语及常见的小波基介绍
本篇是这段时间学习小波变换的一个收尾,了解一下常见的小波函数,混个脸熟,知道一下常见的几个术语,有个印象即可,这里就当是先作一个备忘录,以后若有需要再深入研究。一、小波基选择标准 小波变换不同于傅里叶变换,根据小波母函数的不同,小波变换的结果也不尽相同。现实中到底选择使用哪一种小波的标准一般有以下几点:1、支撑长度 小波函数Ψ(t)、Ψ(ω)、尺度函数φ转载 2017-05-19 15:25:56 · 16041 阅读 · 2 评论 -
小波系数的理解
我们学过内积,内积的物理含义:两个图形的相似性,若两个图形完全正交,则内积为0,若两个图形完全一样,则系数为1(相对值)。小波变换的实质是:原信号与小波基函数的相似性。小波系数就是小波基函数与原信号相似的系数。(英文文献中是这样解释:The definition of wavelet transform shows that the wavelet analysis is a measure原创 2017-05-19 20:37:14 · 24962 阅读 · 0 评论 -
小波变换
一、绘制原理:1.需要用到的小波工具箱中的三个函数cwt(),centfrq(),scal2frq()COEFS = cwt(S,SCALES,'wname')该函数实现连续小波变换,其中S为输入信号,SCALES为尺度,wname为小波名称。 FREQ = centfrq('wname')该函数求以wname命名的母小波的中心频率。 F = scal2frq(A,转载 2017-05-19 21:34:45 · 5153 阅读 · 0 评论