关闭

POJ 1408 Fishnet (判断围成四边形最大面积,直线相交问题)

310人阅读 评论(0) 收藏 举报
分类:
Fishnet
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 1935   Accepted: 1242

Description

A fisherman named Etadokah awoke in a very small island. He could see calm, beautiful and blue sea around the island. The previous night he had encountered a terrible storm and had reached this uninhabited island. Some wrecks of his ship were spread around him. He found a square wood-frame and a long thread among the wrecks. He had to survive in this island until someone came and saved him.

In order to catch fish, he began to make a kind of fishnet by cutting the long thread into short threads and fixing them at pegs on the square wood-frame. He wanted to know the sizes of the meshes of the fishnet to see whether he could catch small fish as well as large ones.

The wood frame is perfectly square with four thin edges on meter long: a bottom edge, a top edge, a left edge, and a right edge. There are n pegs on each edge, and thus there are 4n pegs in total. The positions of pegs are represented by their (x,y)-coordinates. Those of an example case with n=2 are depicted in figures below. The position of the ith peg on the bottom edge is represented by (ai,0). That on the top edge, on the left edge and on the right edge are represented by (bi,1), (0,ci) and (1,di), respectively. The long thread is cut into 2n threads with appropriate lengths. The threads are strained between (ai,0) and (bi,1),and between (0,ci) and (1,di) (i=1,...,n).

You should write a program that reports the size of the largest mesh among the (n+1)2 meshes of the fishnet made by fixing the threads at the pegs. You may assume that the thread he found is long enough to make the fishnet and the wood-frame is thin enough for neglecting its thickness.

Input

The input consists of multiple sub-problems followed by a line containing a zero that indicates the end of input. Each sub-problem is given in the following format.
n
a1 a2 ... an
b1 b2 ... bn
c1 c2 ... cn
d1 d2 ... dn
you may assume 0 < n <= 30, 0 < ai,bi,ci,di < 1

Output

For each sub-problem, the size of the largest mesh should be printed followed by a new line. Each value should be represented by 6 digits after the decimal point, and it may not have an error greater than 0.000001.

Sample Input

2
0.2000000 0.6000000
0.3000000 0.8000000
0.1000000 0.5000000
0.5000000 0.6000000
2
0.3333330 0.6666670
0.3333330 0.6666670
0.3333330 0.6666670
0.3333330 0.6666670
4
0.2000000 0.4000000 0.6000000 0.8000000
0.1000000 0.5000000 0.6000000 0.9000000
0.2000000 0.4000000 0.6000000 0.8000000
0.1000000 0.5000000 0.6000000 0.9000000
2
0.5138701 0.9476283
0.1717362 0.1757412
0.3086521 0.7022313
0.2264312 0.5345343
1
0.4000000
0.6000000
0.3000000
0.5000000
0

Sample Output

0.215657
0.111112
0.078923
0.279223
0.348958



题意:有一个1*1的正方形在四条边上各取n个点,然后求在正方形内围成的最大四边形的面积

思路:用一个矩阵来保存所有的点,四边上每个点是输入的,内部的每个点通过线段交点的计算可以计算出来。
然后枚举任意i-1,i,j-1,j四个点计算四边形的面积,求最大值。在计算四边形面积的时候四边形可以转换成两
个三角形来计算,这两个三角形的面积是通过向量的叉积来计算的。两个向量的叉积可以算出以这两个向量为
邻边的四边形的面积,注意除以2.

ac代码:
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<iostream>
#include<algorithm>
#define fab(a) (a)>0?(a):(-a)
#define LL long long
#define MAXN 2100
#define mem(x) memset(x,0,sizeof(x))
#define INF 0xfffffff 
#define PI acos(-1.0)
using namespace std;
struct s
{
	double x,y;
}list[MAXN][MAXN];
double dis(s aa,s bb)
{
	return sqrt((aa.x-bb.x)*(aa.x-bb.x)+(aa.y-bb.y)*(aa.y-bb.y));
}
double area(s a,s b,s c)//叉积求面积
{  
    return (a.x-c.x)*(b.y-c.y)-(b.x-c.x)*(a.y-c.y);  
}
s fun(s a,s b,s c,s d)//求交点
{
    s temp=a;
    double t=((a.x-c.x)*(c.y-d.y)-(a.y-c.y)*(c.x-d.x))/((a.x-b.x)*(c.y-d.y)-(a.y-b.y)*(c.x-d.x));
    temp.x+=(b.x-a.x)*t;
    temp.y+=(b.y-a.y)*t;
    return temp;
}
void intn(int n)
{
	double a;
	int i,j;
	list[0][0].x=0,list[0][0].y=0;
	list[0][n+1].x=1.0,list[0][n+1].y=0.0;
	list[n+1][n+1].x=1.0,list[n+1][n+1].y=1.0;
	list[n+1][0].x=0.0,list[n+1][0].y=1.0;
	for(i=1;i<=n;i++){
		scanf("%lf",&a);
		list[0][i].x=a,list[0][i].y=0.0;
	}
	for(i=1;i<=n;i++){
		scanf("%lf",&a);
		list[n+1][i].x=a,list[n+1][i].y=1.0;
	}
	for(i=1;i<=n;i++){
		scanf("%lf",&a);
		list[i][0].x=0.0,list[i][0].y=a;
	}
	for(i=1;i<=n;i++){
		scanf("%lf",&a);
		list[i][n+1].x=1.0,list[i][n+1].y=a;
	}
}
int main()
{
	int n,i,j;
	while(scanf("%d",&n)!=EOF,n)
	{
		intn(n);
		for(j=1;j<=n;j++)
        {
            for(i=1;i<=n;i++)
            {
             list[i][j]=fun(list[0][j],list[n+1][j],list[i][0],list[i][n+1]);
            }
        }
        double M=0.0,ans;
        for(i=1; i<=n+1; i++)
        {
            for(j=1; j<=n+1; j++)
            {
                ans=fab(area(list[i-1][j-1],list[i][j],list[i][j-1]));
                ans+=fab(area(list[i-1][j-1],list[i][j],list[i-1][j]));
                ans/=2;
                M=max(M,ans);
            }
        }
        printf("%.6lf\n",M);
	}
	return 0;
}


0
0
查看评论
发表评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

poj Fishnet 1408 (求最大四边形面积) 好题

Fishnet Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 1941   Accept...
  • yanghui07216
  • yanghui07216
  • 2015-11-25 21:47
  • 208

判断两条线段/直线相交,并求交点

一.矢量基本知识     因为后面的计算需要一些矢量的基本知识,这里只是简单的列举如下,如果需要更加详细的信息,可以自行搜索wikipedia或google。 1.矢量的概念:如果一条线段...
  • u014593244
  • u014593244
  • 2014-07-31 08:10
  • 658

算法之美——求两直线交点(三维叉积)——求四边形面积(二维叉积)

一般方程法: 直线的一般方程为F(x) = ax + by + c = 0。既然我们已经知道直线的两个点,假设为(x0,y0), (x1, y1),那么可以得到a = y0 – y1, b = ...
  • hktkfly6
  • hktkfly6
  • 2017-04-04 23:38
  • 724

任意给4条边求形成四边形面积最大值

题目:任意给4条边求形成四边形面积最大值。 结论:形成的四边形的四个顶点都在它的外接圆上,面积S满足: 其中 这也即是圆内接四边形的面积公式。 证明过程: 首先我们把四边形...
  • ACdreamers
  • ACdreamers
  • 2013-07-29 13:19
  • 5803

求抛物线与直线形成的面积(数学)

HDU1071   应该是求定积分的 但是还没研究很透怎么用定积分实现  就找了一个公式 s = -(y2-y1)/pow(x2-x1, 2)*pow(x3-x2, 3)/6   以下是Di...
  • xuechelingxiao
  • xuechelingxiao
  • 2013-12-17 14:12
  • 552

两个向量构成的平行四边形面积的求解 ————简单技巧

当有两个向量p1,p2。 如果两个向量能够构成平行四边形,其面积可表示为  area= |(x1*y2-X2*y1)|; 以下转载详细解析 原文链接:http://blog.csdn.net/z...
  • blank__box
  • blank__box
  • 2016-10-10 22:54
  • 2105

圆与多边形的相交面积

#include #include #include #include using namespace std; const double eps = 1e-8; const double PI ...
  • hdweilao
  • hdweilao
  • 2015-08-17 17:00
  • 629

判断平面上两条直线是否相交

判断平面上两条直线是否相交 分类: 数据结构与算法设计2013-09-17 09:07 117人阅读 评论(0) 收藏 举报 直线相交 首先引出计算几何学中一个最基本的问...
  • pi9nc
  • pi9nc
  • 2013-09-18 22:17
  • 6342

poj_1408 Fishnet(四边形面积)

Fishnet Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2195   Accept...
  • christry_stool
  • christry_stool
  • 2016-11-22 20:28
  • 69

POJ 1408 Fishnet【枚举+线段相交+叉积求面积】

题目: http://poj.org/problem?id=1408 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=220...
  • Cfreezhan
  • Cfreezhan
  • 2013-07-30 10:08
  • 1198
    时刻记住--never give up
    人生如棋,吾愿为卒,吾行虽慢,谁曾见吾后退半步!
    个人资料
    • 访问:195636次
    • 积分:8870
    • 等级:
    • 排名:第2502名
    • 原创:723篇
    • 转载:3篇
    • 译文:0篇
    • 评论:28条