###### POJ 1408 Fishnet (判断围成四边形最大面积，直线相交问题)
Fishnet
 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 1935 Accepted: 1242

Description

A fisherman named Etadokah awoke in a very small island. He could see calm, beautiful and blue sea around the island. The previous night he had encountered a terrible storm and had reached this uninhabited island. Some wrecks of his ship were spread around him. He found a square wood-frame and a long thread among the wrecks. He had to survive in this island until someone came and saved him.

In order to catch fish, he began to make a kind of fishnet by cutting the long thread into short threads and fixing them at pegs on the square wood-frame. He wanted to know the sizes of the meshes of the fishnet to see whether he could catch small fish as well as large ones.

The wood frame is perfectly square with four thin edges on meter long: a bottom edge, a top edge, a left edge, and a right edge. There are n pegs on each edge, and thus there are 4n pegs in total. The positions of pegs are represented by their (x,y)-coordinates. Those of an example case with n=2 are depicted in figures below. The position of the ith peg on the bottom edge is represented by (ai,0). That on the top edge, on the left edge and on the right edge are represented by (bi,1), (0,ci) and (1,di), respectively. The long thread is cut into 2n threads with appropriate lengths. The threads are strained between (ai,0) and (bi,1),and between (0,ci) and (1,di) (i=1,...,n).

You should write a program that reports the size of the largest mesh among the (n+1)2 meshes of the fishnet made by fixing the threads at the pegs. You may assume that the thread he found is long enough to make the fishnet and the wood-frame is thin enough for neglecting its thickness.

Input

The input consists of multiple sub-problems followed by a line containing a zero that indicates the end of input. Each sub-problem is given in the following format.
n
a1 a2 ... an
b1 b2 ... bn
c1 c2 ... cn
d1 d2 ... dn
you may assume 0 < n <= 30, 0 < ai,bi,ci,di < 1

Output

For each sub-problem, the size of the largest mesh should be printed followed by a new line. Each value should be represented by 6 digits after the decimal point, and it may not have an error greater than 0.000001.

Sample Input

2
0.2000000 0.6000000
0.3000000 0.8000000
0.1000000 0.5000000
0.5000000 0.6000000
2
0.3333330 0.6666670
0.3333330 0.6666670
0.3333330 0.6666670
0.3333330 0.6666670
4
0.2000000 0.4000000 0.6000000 0.8000000
0.1000000 0.5000000 0.6000000 0.9000000
0.2000000 0.4000000 0.6000000 0.8000000
0.1000000 0.5000000 0.6000000 0.9000000
2
0.5138701 0.9476283
0.1717362 0.1757412
0.3086521 0.7022313
0.2264312 0.5345343
1
0.4000000
0.6000000
0.3000000
0.5000000
0

Sample Output

0.215657
0.111112
0.078923
0.279223
0.348958

ac代码：

#include<stdio.h>
#include<string.h>
#include<math.h>
#include<iostream>
#include<algorithm>
#define fab(a) (a)>0?(a):(-a)
#define LL long long
#define MAXN 2100
#define mem(x) memset(x,0,sizeof(x))
#define INF 0xfffffff
#define PI acos(-1.0)
using namespace std;
struct s
{
double x,y;
}list[MAXN][MAXN];
double dis(s aa,s bb)
{
return sqrt((aa.x-bb.x)*(aa.x-bb.x)+(aa.y-bb.y)*(aa.y-bb.y));
}
double area(s a,s b,s c)//叉积求面积
{
return (a.x-c.x)*(b.y-c.y)-(b.x-c.x)*(a.y-c.y);
}
s fun(s a,s b,s c,s d)//求交点
{
s temp=a;
double t=((a.x-c.x)*(c.y-d.y)-(a.y-c.y)*(c.x-d.x))/((a.x-b.x)*(c.y-d.y)-(a.y-b.y)*(c.x-d.x));
temp.x+=(b.x-a.x)*t;
temp.y+=(b.y-a.y)*t;
return temp;
}
void intn(int n)
{
double a;
int i,j;
list[0][0].x=0,list[0][0].y=0;
list[0][n+1].x=1.0,list[0][n+1].y=0.0;
list[n+1][n+1].x=1.0,list[n+1][n+1].y=1.0;
list[n+1][0].x=0.0,list[n+1][0].y=1.0;
for(i=1;i<=n;i++){
scanf("%lf",&a);
list[0][i].x=a,list[0][i].y=0.0;
}
for(i=1;i<=n;i++){
scanf("%lf",&a);
list[n+1][i].x=a,list[n+1][i].y=1.0;
}
for(i=1;i<=n;i++){
scanf("%lf",&a);
list[i][0].x=0.0,list[i][0].y=a;
}
for(i=1;i<=n;i++){
scanf("%lf",&a);
list[i][n+1].x=1.0,list[i][n+1].y=a;
}
}
int main()
{
int n,i,j;
while(scanf("%d",&n)!=EOF,n)
{
intn(n);
for(j=1;j<=n;j++)
{
for(i=1;i<=n;i++)
{
list[i][j]=fun(list[0][j],list[n+1][j],list[i][0],list[i][n+1]);
}
}
double M=0.0,ans;
for(i=1; i<=n+1; i++)
{
for(j=1; j<=n+1; j++)
{
ans=fab(area(list[i-1][j-1],list[i][j],list[i][j-1]));
ans+=fab(area(list[i-1][j-1],list[i][j],list[i-1][j]));
ans/=2;
M=max(M,ans);
}
}
printf("%.6lf\n",M);
}
return 0;
}

#### 求抛物线与直线相交面积

2016-08-09 14:48:16

#### 任意给4条边求形成四边形面积最大值

2013-07-29 13:19:31

#### 空间直线段和三角形相交算法

2007-04-15 09:21:00

#### 算法之美——求两直线交点（三维叉积）——求四边形面积（二维叉积）

2017-04-04 23:38:35

#### 计算几何 ( 求凸包，计算三角形面积 )——最大三角形 ( HDU 2202 )

2016-07-25 14:25:21

#### poj 2653代码 判断两直线是否相交

2013年09月15日 5KB 下载

#### POJ 2546 Circular Area [相交园面积]【计算几何】

2016-04-08 21:48:50

#### poj Fishnet 1408 （求最大四边形面积） 好题

2015-11-25 21:47:28

#### 任意多边形面积计算

2015-09-11 10:01:03

#### POJ1410Intersection【判断线段与矩形相交+点在矩形内的简单判定】

2015-09-04 09:58:10

## 不良信息举报

POJ 1408 Fishnet (判断围成四边形最大面积，直线相交问题)