为什么Fibonacci数列相邻两项之比会趋于0.618?

你或许熟知一个非常经典的结论: Fibonacci 数列 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, … (头两项都是 1 ,此后每一项都是前两项之和)的相邻两项之比将会越来越接近黄金比例 0.618 ,不信请看:

      1 / 1 = 1.0000000...
      1 / 2 = 0.50000000...
      2 / 3 = 0.66666667...
      3 / 5 = 0.60000000...
      5 / 8 = 0.62500000...
      8 / 13 = 0.61538462...
      13 / 21 = 0.61904762...
      21 / 34 = 0.61764706...
      34 / 55 = 0.61818182...
      55 / 89 = 0.61797753...
      89 / 144 = 0.61805556...
      144 / 233 = 0.61802575...
      … …

    Fibonacci 数列究竟是怎么和黄金比例扯上关系的?一个简单的解释就是,假设相邻两项之比存在一个极限,那么到了无穷远的时候,连续的三个数 a, b, a + b 将会满足 a / b = b / (a + b) ,这正好就是黄金比例的定义。我最近用 Mathematica 做了一组动画,尝试着用图形化的方法更直观地展示 Fibonacci 数列和黄金比例之间的联系。


      

    首先,让我们用另一种方式来定义黄金比例。如果在一个矩形中切掉一个正方形以后,剩下的小矩形的长宽比正好和原矩形相同(即大小两个矩形相似),我们就说这个矩形是一个黄金矩形,可以求出它的宽与长之比应该等于 (√5 - 1) / 2 ,一个约为 0.618 的无限不循环小数,也就是我们所说的黄金比例。我们要说明的就是,分别以 (1, 1), (1, 2), (2, 3), (3, 5), (5, 8), (8, 13), … 为边的矩形序列,其长宽比将会越来越接近这个黄金比例。

      

 
    注意到,在这个矩形序列中,每一个矩形都可以看作是由上一个矩形旋转 90 度后再拼接一个正方形得来的,例如下图。

      

 
    现在,我们从 (1, 1) 开始,不断构造下一个矩形,并且保留作图痕迹。你会看到,随着尺度的增加,初始时的细节已经消失,于是整个矩形看起来和它左侧的小矩形具有完全相同的无限递归结构。渐渐地,大小两个矩形变得几乎完全相似,它们的长宽比变得几乎完全相同!这就说明,矩形的长宽比将会越来越接近黄金比例。

      

 
    有趣的是,不管最初的那个矩形的长宽比是什么,随着尺度的增加,它对整个图形的结构产生的影响都会越来越小,就好像不断扩散的涟漪一样,最终在水面上完全消失。因而,不管数列的最初两个数是什么(比如说 2 和 7 ),只要今后每一个数都是前两个数之和,相邻两项之比总是会越来越接近 0.618 。这可以很好地解释一个我很喜欢的数学小魔术

      

### 回答1: 斐波那契数列两项之和可以通过以下方法实现: 1. 定义一个变量sum,初始值为。 2. 定义两个变量a和b,分别表示斐波那契数列中的前两项,初始值分别为和1。 3. 使用循环语句,每次将a和b相加,并将结果赋值给sum。 4. 将a的值赋给b,将sum的值赋给a。 5. 重复执行步骤3和4,直到达到指定的数。 6. 输出sum的值,即为斐波那契数列两项之和。 例如,输出斐波那契数列中前10两项之和: ``` sum = a = b = 1 for i in range(10): temp = a + b sum += temp a = b b = temp print(sum) ``` 输出结果为:231。 ### 回答2: 斐波那契数列是指从1开始,第n个数是它前面两个数之和,即f(n) = f(n-1) + f(n-2)。我们可以用递归函数或循环来实现输出斐波那契数列两项之和的功能。 首先,我们来看递归函数的实现。 递归函数就是在函数内部调用自身来实现程序功能的一种函数。用递归函数输出斐波那契数列两项之和,需要注意的是,由于斐波那契数列是从1开始计数的,我们需要给递归函数提供两个初始的值f(1)和f(2),然后从第三开始递归计算。代码如下: ```python def fib(n): if n == 1: return 1 elif n == 2: return 1 else: return fib(n-1) + fib(n-2) n = int(input("请输入斐波那契数列中的数:")) sum = fib(n) + fib(n-1) print("第", n, "和第", n-1, "的和为:", sum) ``` 以上代码中,fib()函数接收一个参数n,如果n等于1或2,则直接返回1;否则,递归地调用fib()函数计算f(n-1)和f(n-2)的和。在主程序中,我们输入要求的斐波那契数列数n,然后计算第n和第n-1的和,并输出到屏幕上。 接下来,我们来看用循环实现输出斐波那契数列两项之和的方法。 用循环实现输出斐波那契数列两项之和,需要先用列表存储斐波那契数列中的每一,然后计算相邻两项之和。代码如下: ```python n = int(input("请输入斐波那契数列中的数:")) fib_list = [1, 1] for i in range(2, n): fib_list.append(fib_list[i-1] + fib_list[i-2]) sum = fib_list[-1] + fib_list[-2] print("第", n, "和第", n-1, "的和为:", sum) ``` 以上代码中,我们输入要求的斐波那契数列数n,然后创建一个列表fib_list,用于存储斐波那契数列中的每一。从第3开始,我们使用循环计算出斐波那契数列中的每一,并将其追加到fib_list中。在计算完斐波那契数列中的所有之后,我们来计算第n和第n-1的和,并输出到屏幕上。 以上两种方法都可以用来输出斐波那契数列两项之和,其中递归函数较为简洁但可能存在效率问题,而循环方法则更为可控但需要更多的代码来实现。具体方法选择可以根据实际需求和使用场景来进行选择。 ### 回答3: Fibonacci数列是一个经典的数学问题,这个数列的规律是从第三开始,每一均等于前两项之和,即F(n) = F(n-1) + F(n-2),其中F(0)=0,F(1)=1。为了输出Fibonacci数列两项之和,我们需要先找到对应的两项。 假设我们要输出第n和第m之和,我们可以使用递推公式F(n) = F(n-1) + F(n-2)和F(m) = F(m-1) + F(m-2)来计算这两个数的值。具体的,我们可以使用循环的方式逐计算Fibonacci数列的每一,直到达到我们要求的第n和第m值。 在进行循环计算过程中,我们还需要定义一个变量来存储第n和第m的和,每次计算出对应两个数的值之后,将其相加并存储到这个变量中。 最后,我们输出这个变量的值即可得到Fibonacci数列中第n和第m的和。具体实现细节可参考下方的代码示意: ```python def sum_of_fibonacci(n, m): fib = [0, 1] for i in range(2, max(n, m) + 1): fib.append(fib[i-1] + fib[i-2]) return fib[n] + fib[m] # 示例: print(sum_of_fibonacci(3, 5)) # 输出:8 ``` 在上述代码中,我们先定义了一个包含前两项F(0)=0,F(1)=1的Fibonacci数列。然后使用循环的方式计算出第n和第m的值,将它们相加并返回结果。最后我们用(3, 5)作为示例输入,输出结果为8。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值