[置顶] hjimce算法类博文目录

一、深度学习 深度学习(一)深度学习学习资料 深度学习(二)theano学习笔记(1)环境搭建 深度学习(三)theano学习笔记(2)基础函数 深度学习(四)卷积神经网络Lenet-5实现 深度学习(五)caffe环境搭建 深度学习(六)caffe入门学习 深度学习(七)caffe源码c++学习笔记 深度学习(八)RBM受限波尔兹曼机学习-未...
阅读(14897) 评论(9)

深度学习(七十一)darknet 源码阅读

深度学习(七十一)darknet 源码阅读...
阅读(248) 评论(0)

深度学习(七十)darknet 实现编写mobilenet源码

)parse.c文件中函数string_to_layer_type,添加网络层类型解析: if (strcmp(type, "[depthwise_convolutional]") == 0) return DEPTHWISE_CONVOLUTIONAL; (2)darknet.h文件中枚举类型LAYER_TYPE,添加网络层枚举类型: DEPTHWISE_CONVOLUTIONAL; (3)parse.c文件中函数parse_network_cfg添加网络层解析后进行构建: LAYER_T...
阅读(417) 评论(6)

tensorflow windows

conda create -n py35 python=3.5activate py35pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/windows/gpu/tensorflow_gpu-1.2.1-cp35-cp35m-win_amd64.whl...
阅读(183) 评论(0)

从零开始编写深度学习库(五)PoolingLayer 网络层CPU编写

记录:编写卷积层和池化层,比较需要注意的细节就是边界问题,还有另外一个就是重叠池化的情况,这两个小细节比较重要,边界问题pad在反向求导的时候,由于tensorflow是没有计算的,另外一个比较烦人的是Eigen::Tensor的rowmajor、和colmajor问题,也很烦人。为了跟tensorflow做比较,一些边界处理上的细节,需要特别注意。一、c++、maxpooling、avgpool...
阅读(277) 评论(1)

深度学习(六十八)darknet使用

这几天因为要对yolo进行重新训练,需要用到imagenet pretrain,由于网络是自己设计的网络,所以需要先在darknet上训练imagenet,由于网上都没有相关的说明教程,特别是图片路径是怎么和类别标签对应起来的,让我百思不得其解,所以最后就自己去查看了darknet的源码,发现原来作者是用了字符串匹配,来查找图片路径字符串中是否有与类别标签字符串匹配的子字符串,以此判断该类别标签的...
阅读(623) 评论(0)

深度学习(六十九)darknet 实现实验 Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffma

原始模型大小64M:mAP=0.224 训练500次,模型大小54M:mAP=0.203 训练5000次,模型大小49M:mAP=0.214 训练50000次,模型大小39M:mAP=0.221 训练100000次,模型大小30M:mAP=0.231...
阅读(522) 评论(5)

深度学习(六十六)生成模型、最大化似然、KL散度

成模型中,假设样本数据是来自于未知的数据分布Pr中采样得到,生成模型的学习过程就是要学习一个Pr的近似概率分布Pθ,其中θ是模型的参数。对于Pθ有两种建模方式: (1)直接用参数θ来描述密度函数。也就是概率密度函数满足: (2)通过已知分布的随机变量Z,用参数θ的变换函数gθ(z)来描述概率密度函数:...
阅读(528) 评论(0)

深度学习(六十七)metal forge深度学习库使用

1、设置输入:let input = Input()或者let input = Input(width: 100, height: 100, channels: 3)2、创建网络:let output = input --> Resize(width: 28, height: 28) --> Convolution(kernel: (5, 5), channel...
阅读(333) 评论(0)

深度学习(六十四)Faster R-CNN物体检测

在经典的RCNN中,物体检测的效果取得了State-of-the-art的效果,但是由于计算速度比较慢,后来在SPPNET、Fast R-CNN中,用卷积神经网络一次性提取一整张图片的特征图,然后在根据selective search在原始图片得到的搜索框,映射特征图上bbox,裁剪出feature map的bbox,然后在进行sotfmax物体分类。从而避免了RCNN中,需要2000次的CNN前向计算。 在之前的RCNN、Fast-RCNN等算法中,都需要经过Region proposal相关算法进行原始...
阅读(1526) 评论(0)

深度学习(六十三)空间变换网络

卷积神经网络每一层都有其强大的功能,然而它对于输入数据的空间不变性却还有很大的缺陷,可能max pooling层,具有平移不变性,然而因为max pooling是一个局部操作,在CNN中对于大尺度的空间变换并不具备不变性。于是paper提出...
阅读(1681) 评论(0)

常用数据集脚本

1、imagenet 分类:http://caffe.berkeleyvision.org/gathered/examples/imagenet.html(1)辅助工具源码caffe下面的:./data/ilsvrc12/get_ilsvrc_aux.sh可以下载imagenet相关标注文件、均值文件(2)lmdb生成打包:examples/imagenet/create_imagenet.sh只...
阅读(498) 评论(0)

深度学习(六十五)移动端网络MobileNets

1、L2 decay权重对精度的影响:根据文献介绍,在引入可分离卷积层的时候,建议不用用L2权重,对降低精度,于是做了如下实验:第二行是采用L2 weight decay为0.00005的权重,明显最高精度下降了接近2%2、速度对比:...
阅读(930) 评论(0)

深度学习(六十二)SqueezeNet网络设计思想笔记

1、尽量用1*1的卷积核替代3*3的卷积核 尽可能选择1*1的卷积核为主,因为1*1的卷积核比3*3的卷积核参数少了9倍。 2、引入Squeeze layer,尽量减少每一层的输入特征图数量 比如对于3*3的卷积层,参数的个数是:(number of input channels) * (numbe...
阅读(729) 评论(3)

从零开始编写深度学习库(五)Eigen Tensor学习笔记2.0

1、extract_image_patches函数的使用:假设Eigen::Tensor形状为(3,8,8,9),现在要对第二维、第三维根据size大小为(2,2),stride=(2,2),那么如果tensor类型是rowmajor类型,那么经过extract_image_patches后的数据就是(3,4*4,2,2,9)的5维数组,如果tensor类型是colmajor类型,那么得到的数据就...
阅读(491) 评论(0)

linux 记录

1、硬盘挂载:(1)查看需要挂载的硬盘号:sudo fdisk -l(2)编辑fstab文件:sudo vim /etc/fstab在最后面添加需要挂载的硬盘:/dev/sdb5  /home/research/disk1    ext4  defaults  0  0/dev/sda  /home/research/disk3    ext4  defaults  0  0上面分别挂载了sda、...
阅读(234) 评论(0)
165条 共11页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:726456次
    • 积分:7930
    • 等级:
    • 排名:第2585名
    • 原创:164篇
    • 转载:0篇
    • 译文:1篇
    • 评论:364条
    个人简介
    声明:博文的编写,主要参考网上资料,并结合个人见解,仅供学习、交流使用,如有侵权,请联系博主删除,原创文章转载请注明出处。博主qq:1393852684,微博:http://weibo.com/5372176306/profile?profile_ftype=1&is_all=1#_0
    博客专栏
    最新评论