关闭
当前搜索:

[置顶] hjimce算法类博文目录

一、深度学习 深度学习(一)深度学习学习资料 深度学习(二)theano学习笔记(1)环境搭建 深度学习(三)theano学习笔记(2)基础函数 深度学习(四)卷积神经网络Lenet-5实现 深度学习(五)caffe环境搭建 深度学习(六)caffe入门学习 深度学习(七)caffe源码c++学习笔记 深度学习(八)RBM受限波尔兹曼机学习-未...
阅读(19646) 评论(12)

数据结构(十二)动态规划

1 递归函数建模动态规划一般用于全局问题,在构造递归的时候,一般采用自顶向下分解的方法,先把全局问题分解成更小的子问题求解。下面举两个例子例子1:有一座高度是10阶的楼梯,从下往上走,每跨一步可以是一级或两级台阶。要求用程序求出一共一共有多少种走法。问题分析建模:首先总共有10步,假设只剩最后一步就到达第10阶,这个时候会有两种情况:第一种是从第九阶到第十阶,第二种是从第八阶到第十阶,然后两种情况......
阅读(38) 评论(0)

数据结构(十一)桶排序

1、算法流程上面的计数排序其实是桶排序的一个特例,当数据的范围是0~n,我们如果划分了n个桶,那么就是计数排序。我们现在假设数据范围是0~1的数,算法流程如下:(1)划分桶;(2)把每个数据插入对应的桶中,插入每个桶的时候,用插入排序;(3)链接所有的不为空的桶排序结果。2、代码实现//假设数据范围是0~1,我们切分了5个桶 float * bucket_sort(float *data,int ...
阅读(50) 评论(0)

数据结构(十)二叉排序树

1、算法流程(1)树的构建与插入、查找 二叉排序树主要是通过逐个节点插入的方式进行构建树;每插入一个新节点p的时候,从根节点开始判断key值大小,确定往左走还是往右走,逐步递归,直到走到叶子节点,无路可走了,然后插入该节点;需要注意的是:每个新插入的点,肯定都是叶子节点;另外没有办法一次性构建一整颗树。(2)求取最大最小值 从树根节点开始,一直往左走,就是最小值;一直往右走,就是最大值(3)查找P...
阅读(53) 评论(0)

数据结构(九)计数排序

1、算法流程(1)求取待排序数组A的最大值max;(2)创建一个新的数组C[max+1],用于统计数组A中的每个元素a,小于等于a的个数。(3)根据小于等于a的个数,来确定排序后,a在排序数组中的位置,进行位置填充;2、代码实现写代码需要注意事项:(1)计数统计结束后,我们根据C[a]的大小填充元素a,每填充一次C[a]要减去1,这样是为了保证重复数据可以正常填充;(2)填充如果是要稳定排序,那么...
阅读(52) 评论(0)

数据结构(八)栈

1、算法栈是后入先出的规则,在代码实现的时候,构造栈链表的时候,节点指向前面的节点,而队列节点指向后面的节点,以便出栈的时候,代码实现方便。2、代码示例#ifndef DATA_STRUCT_STACK_H #define DATA_STRUCT_STACK_H #include using namespace std; class Stack{ class node{//链表节点 ...
阅读(53) 评论(0)

数据结构(七)队列

1、队列需要具备的特性队列和栈的底层实现数据结构可以是:数组、链表,只不过在此基础上,队列和栈需要重载两个函数:节点的插入与删除函数。队列只能从链表头删除节点,从链表末尾插入节点;2、示例代码#ifndef DATA_STRUCT_QUEUE_H #define DATA_STRUCT_QUEUE_H #include using namespace std; class Queue{ ...
阅读(62) 评论(0)

数据结构(六)霍夫曼树与编码

1、算法流程(1)构建霍夫曼树:自底向上根据统计频率构建霍夫曼树: A、把所有的节点扔进排序队列queue中; B、从queue选择选择前面两个最小的元素a、b,把最小的树a作为左节点,把最小的b作为右节点,以此构建父节点c(c的频率值为a+b的频率值),然后把a、b从队列删除、把c节点插入队列; C、循环(A)、(B)步骤构建霍夫曼树,直到queue为空。(2)编码阶段:自顶向下 A、除了树的根...
阅读(55) 评论(0)

数据结构(五)堆排序

1、算法流程(1)对原始数据构建大根堆:A、从下至上,遍历每个非叶子父节点,保证每个非叶子父节点都比它的左右子节点来的大,非叶子父节点的对应索引范围为[0,n/2-1];B、在遍历每个非叶子父节点的时候,如果发生该节点交换(下沉),那么要递归下去(2)交换大根堆构建后的数组的首个元素与末尾元素,这时候数组的末尾数值最大,排除该元素排序。(3)接着因为这个堆,就相当于堆顶元素被替换成了新的元素,其他...
阅读(88) 评论(0)

数据结构(四)选择排序

1、算法流程(1)首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置。(2)然后,再从剩余未排序元素中继续寻找最小(大)元素,放到已排序序列的末尾。(3)以此类推,直到所有元素均排序完毕。2、代码实现void select_sort(int*data,int length) { for(int i=0;i<length;i++) { int min_da...
阅读(67) 评论(0)

数据结构(三)插入排序

1、算法流程(1)假设数据集A,第i个元素的左边是排序好的;(2)把第i个元素a从右到左与i左边的元素b比较,如果发现该b>a,那么就把b后移一个位置(需要把a元素的位置先临时保存下来,然后空出位置);直到b的时候,就把a插进去。2、代码实现:void insert_sort(int*data,int length) { for(int i=0;i<length;i++) { ...
阅读(72) 评论(0)

数据结构(二)冒泡排序

1、算法流程:(1)循环比较两个相邻的元素,如果第一个比第二个大,那么交换(2)经过第一轮迭代后,最后一个元素是最大值;然后继续第二轮迭代,除了最后一个之外(3)持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。2、代码实现:void bubble_sort(int*data,int length) { bool flag= true; int count=0;...
阅读(65) 评论(0)

数据结构(一)快速排序

1、算法流程(1)输入两个哨兵i,j,整个过程要一直保证i(1)从数组D中选择第一个数为基准数A=D[i];(2)循环查找交换对,并交换,直到不满足i:从i+1元素开始,向右查找大于A的数a(始终保证i;从j元素查找小于A的数b(始终保证i,得到交换对(a,b),然后进行交换(4)判断终止位置i=j的位置数值与基准数A是否需要交换,这样最后得到的就是A左边的数D1都是小于A的,A右边的数D2,都是...
阅读(124) 评论(1)

windows 安装tensorflow

1、安装anaconda22、Follow the instructions on the Anaconda download site to download and install Anaconda.Create a conda environment named tensorflow by invoking the following command:C:> conda create -n ...
阅读(738) 评论(0)

odps mapreduce学习笔记

一、map阶段主要函数: //record表示输入表的每一行记录 public void map(long recordNum, Record record, TaskContext context) throws IOException { for (int i = 0; i < record.getColumnCount(); i++) {//遍历每一列...
阅读(577) 评论(0)

基础知识 java 图片与string相互转换

import java.awt.*; import java.awt.image.BufferedImage; import java.awt.image.RenderedImage; import java.io.*; import java.nio.charset.StandardCharsets; import java.util.Base64; import javax.imageio.I...
阅读(433) 评论(0)

云计算odps使用笔记(一)环境搭建

1、到https://www.aliyun.com/product/odps?spm=a2c0j.7906784.recProduct.2.32121b06V3KcVI开通账号,然后选择按量付费,创建odps项目的时候选择io后付费2、maxcompute搭建:https://help.aliyun.com/product/27797.html3、maxcompute studio ide搭建:h...
阅读(505) 评论(0)

odps词频统计

1、搭建maxcompute studio2、在项目下面选择script新建文件:new->maxcomput python->python udtf ,然后编写文本spilt:from odps.udf import annotate from odps.udf import BaseUDTF @annotate('string -> string') class my_first_udtf...
阅读(320) 评论(0)

深度学习(七十一)darknet 源码阅读

深度学习(七十一)darknet 源码阅读...
阅读(1654) 评论(0)

深度学习(七十)darknet 实现编写mobilenet源码

)parse.c文件中函数string_to_layer_type,添加网络层类型解析: if (strcmp(type, "[depthwise_convolutional]") == 0) return DEPTHWISE_CONVOLUTIONAL; (2)darknet.h文件中枚举类型LAYER_TYPE,添加网络层枚举类型: DEPTHWISE_CONVOLUTIONAL; (3)parse.c文件中函数parse_network_cfg添加网络层解析后进行构建: LAYER_T...
阅读(3619) 评论(12)

tensorflow windows

conda create -n py35 python=3.5activate py35pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/windows/gpu/tensorflow_gpu-1.2.1-cp35-cp35m-win_amd64.whl...
阅读(730) 评论(0)
182条 共10页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:1191371次
    • 积分:10167
    • 等级:
    • 排名:第2016名
    • 原创:181篇
    • 转载:0篇
    • 译文:1篇
    • 评论:507条
    个人简介
    声明:博文的编写,主要参考网上资料,并结合个人见解,仅供学习、交流使用,如有侵权,请联系博主删除,原创文章转载请注明出处。博主qq:1393852684。内推阿里,欢迎大牛砸简历……
    博客专栏
    最新评论