[置顶] hjimce算法类博文目录

一、深度学习 深度学习(一)深度学习学习资料 深度学习(二)theano学习笔记(1)环境搭建 深度学习(三)theano学习笔记(2)基础函数 深度学习(四)卷积神经网络Lenet-5实现 深度学习(五)caffe环境搭建 深度学习(六)caffe入门学习 深度学习(七)caffe源码c++学习笔记 深度学习(八)RBM受限波尔兹曼机学习-未...
阅读(13592) 评论(9)

forge

1、设置输入:let input = Input()或者let input = Input(width: 100, height: 100, channels: 3)2、创建网络:let output = input --> Resize(width: 28, height: 28) --> Convolution(kernel: (5, 5), channel...
阅读(101) 评论(0)

深度学习(六十四)Faster R-CNN物体检测

在经典的RCNN中,物体检测的效果取得了State-of-the-art的效果,但是由于计算速度比较慢,后来在SPPNET、Fast R-CNN中,用卷积神经网络一次性提取一整张图片的特征图,然后在根据selective search在原始图片得到的搜索框,映射特征图上bbox,裁剪出feature map的bbox,然后在进行sotfmax物体分类。从而避免了RCNN中,需要2000次的CNN前向计算。 在之前的RCNN、Fast-RCNN等算法中,都需要经过Region proposal相关算法进行原始...
阅读(779) 评论(0)

深度学习(六十三)空间变换网络

卷积神经网络每一层都有其强大的功能,然而它对于输入数据的空间不变性却还有很大的缺陷,可能max pooling层,具有平移不变性,然而因为max pooling是一个局部操作,在CNN中对于大尺度的空间变换并不具备不变性。于是paper提出...
阅读(1141) 评论(0)

常用数据集脚本

1、imagenet 分类:http://caffe.berkeleyvision.org/gathered/examples/imagenet.html(1)辅助工具源码caffe下面的:./data/ilsvrc12/get_ilsvrc_aux.sh可以下载imagenet相关标注文件、均值文件(2)lmdb生成打包:examples/imagenet/create_imagenet.sh只...
阅读(246) 评论(0)

深度学习(六十五)移动端网络MobileNets

1、L2 decay权重对精度的影响:根据文献介绍,在引入可分离卷积层的时候,建议不用用L2权重,对降低精度,于是做了如下实验:第二行是采用L2 weight decay为0.00005的权重,明显最高精度下降了接近2%2、速度对比:...
阅读(324) 评论(0)

深度学习(六十二)SqueezeNet网络设计思想笔记

1、尽量用1*1的卷积核替代3*3的卷积核 尽可能选择1*1的卷积核为主,因为1*1的卷积核比3*3的卷积核参数少了9倍。 2、引入Squeeze layer,尽量减少每一层的输入特征图数量 比如对于3*3的卷积层,参数的个数是:(number of input channels) * (numbe...
阅读(298) 评论(3)

深度学习(五)Eigen Tensor学习笔记2.0

1、extract_image_patches函数的使用:假设Eigen::Tensor形状为(3,8,8,9),现在要对第二维、第三维根据size大小为(2,2),stride=(2,2),那么如果tensor类型是rowmajor类型,那么经过extract_image_patches后的数据就是(3,4*4,2,2,9)的5维数组,如果tensor类型是colmajor类型,那么得到的数据就...
阅读(209) 评论(0)

linux 记录

1、硬盘挂载:(1)查看需要挂载的硬盘号:sudo fdisk -l(2)编辑fstab文件:sudo vim /etc/fstab在最后面添加需要挂载的硬盘:/dev/sdb5  /home/research/disk1    ext4  defaults  0  0/dev/sda  /home/research/disk3    ext4  defaults  0  0上面分别挂载了sda、...
阅读(113) 评论(0)

深度学习(五十七)tensorflow andorid yolo物体检测测试

一、修改tensorflow/workspace文件,取消android相关注释# Uncomment and update the paths in these entries to build the Android demo. android_sdk_repository( name = "androidsdk", api_level = 24, # Ensure t...
阅读(345) 评论(0)

从零开始编写深度学习库(五)ConvolutionLayer CPU编写

从零开始编写深度学习库(五)ConvolutionLayer CPU编写...
阅读(238) 评论(0)

Eigen datamap 问题

eigen的MapMatrixdouble,4,4,RowMajor> > M(data);默认数据data是根据colmajor进行存储,但是实际上外部数据数据data我们一般是rowmajor...
阅读(126) 评论(0)

从零开始编写深度学习库(四)Eigen::Tensor学习使用及代码重构

一、矩阵大小可变构造函数:Class Tensor// Create a tensor of rank 3 of sizes 2, 3, 4. This tensor owns // memory to hold 24 floating point values (24 = 2 x 3 x 4). Tensor t_3d(2, 3, 4);//构建一个float类型,3维矩阵,每一维的长度分别为...
阅读(359) 评论(3)

从零开始编写深度学习库(三)ActivationLayer网络层CPU实现

一、C++实现: static void CActivationLayer::relu_forward(const Eigen::MatrixXf &inputs,Eigen::MatrixXf &outputs){ outputs = inputs.cwiseMax(0); } static void CActivationLayer::relu_backward(const Eigen...
阅读(255) 评论(0)

从零开始编写深度学习库(二)FullyconnecteLayer CPU编写

一、C++实现 //y=x*w+b static void CFullyconnecteLayer::forward(const Eigen::MatrixXf &inputs, const Eigen::MatrixXf &weights, const Eigen::VectorXf &bais , Eigen::MatrixXf &outputs) { outputs = inpu...
阅读(288) 评论(0)

从零开始编写深度学习库(一)SoftmaxWithLoss CPU编写

一、C++实现void softmax_function(const Eigen::MatrixXf &inputs,Eigen::MatrixXf &softmax) { softmax = inputs.array().exp(); Eigen::VectorXf sorfmax_rowsum = softmax.rowwise().sum(); softmax = softmax.ar...
阅读(341) 评论(0)
158条 共11页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:611019次
    • 积分:7213
    • 等级:
    • 排名:第2870名
    • 原创:155篇
    • 转载:1篇
    • 译文:1篇
    • 评论:313条
    个人简介
    声明:博文的编写,主要参考网上资料,并结合个人见解,仅供学习、交流使用,如有侵权,请联系博主删除,原创文章转载请注明出处。博主qq:1393852684,微博:http://weibo.com/5372176306/profile?profile_ftype=1&is_all=1#_0
    博客专栏
    最新评论