快速幂取模算法模板

快速模取幂算法~
2009-07-07 19:37

快速模取幂

    数论计算中经常出现的一种运算就是求一个数的幂ab对另外一个数n个模的运算,即计算:

ab mod n (a,b,n是正整数)

    由于计算机只能表示有限位的整数,所以编程时模取幂的运算要注意值的大小范围,当ab的值超过整数范围时,mod运算便无法进行。

    如何解决这个问题,我们引出一个能计算ab mod n的值的有用算法——反复平方法,首先我们必须明确:

d=ab mod n=(…((((a mod n)*a)mod n)*a)mod n…*a)mod n    {共b个a}

    由此可以引出一个迭代式

         d:=a;

         for i:=2 to b do

            d:=d mod n*a;

         d:=d mod n;

    时间复杂度为O(b),当b很大时,效率很低。我们可以将b转换为二进制数<bk,bk-1,...,b1,b0>,然后从最低位b0开始,由右至左逐位扫描,每次迭代时,用到下面两个恒等式:

a2c mod n =(ac)2 mod n      bi=0            

a2c+1 mod n =a*(ac)2 mod n   bi=1 (0<=c<=b)

    其中c为b的二进制数的后缀(bi-1...b0)对应的十进制数,当c成倍增加时,算法保持d=ac mod n不变,直至c=b。

     程序实现可如下:

long long result(long long a,long long b,long long m)
{
    long long d,t;

    d=1;
    t=a;
    while (b>0)
    {
        if (b%2==1)
            d=(d*t)%m;
        b/=2;
        t=(t*t)%m;
    }

    return d;
}

### 矩阵快速幂算法的实现 矩阵快速幂是一种高效的算法,用于计算矩阵的高次幂。它基于分治的思想以及矩阵乘法的结合律来降低时间复杂度。以下是矩阵快速幂的一个通用代码模板: #### Python 实现 ```python import numpy as np def matrix_multiply(A, B, mod=None): """矩阵相乘""" rows_A, cols_A = len(A), len(A[0]) rows_B, cols_B = len(B), len(B[0]) if cols_A != rows_B: raise ValueError("无法进行矩阵乘法") result = [[0 for _ in range(cols_B)] for __ in range(rows_A)] for i in range(rows_A): for j in range(cols_B): temp_sum = 0 for k in range(cols_A): temp_sum += A[i][k] * B[k][j] if mod is not None: temp_sum %= mod result[i][j] = temp_sum return result def matrix_power(matrix, n, mod=None): """矩阵快速幂""" size = len(matrix) identity_matrix = [[int(i == j) for j in range(size)] for i in range(size)] result = identity_matrix base = matrix while n > 0: if n % 2 == 1: result = matrix_multiply(result, base, mod=mod) base = matrix_multiply(base, base, mod=mod) n //= 2 return result ``` 上述代码实现了两个核心函数: - `matrix_multiply`:完成两个矩阵之间的乘法操作,并支持运算[^1]。 - `matrix_power`:通过快速幂的方式高效地计算矩阵的高次幂。 #### C++ 实现 对于更注重性能的语言如C++,也可以提供类似的实现方式: ```cpp #include <vector> using namespace std; // 定义矩阵大小和值 const int MOD = 1e9 + 7; typedef vector<vector<long long>> Matrix; Matrix multiply(const Matrix &A, const Matrix &B){ int r = A.size(), c = B[0].size(); Matrix C(r, vector<long long>(c, 0)); for(int i = 0;i < r;i++) { for(int j = 0;j < c;j++) { for(int k = 0;k < (int)B.size();k++) { C[i][j] = (C[i][j] + A[i][k]*B[k][j])%MOD; } } } return C; } Matrix power(Matrix base, long long exp){ int sz = base.size(); Matrix res(sz, vector<long long>(sz, 0)); // 单位矩阵初始化 for(int i = 0;i < sz;i++) res[i][i] = 1; while(exp > 0){ if(exp & 1){ // 如果当前指数为奇数 res = multiply(res, base); } base = multiply(base, base); // 平方更新基底 exp >>= 1; // 右移一位相当于除以2 } return res; } ``` 以上代码同样包含了两部分功能: - `multiply` 函数负责执行矩阵间的乘法并处理大整数溢出问题[^4]。 - `power` 函数则采用快速幂的方法加速矩阵幂次的计算。 #### 应用实例——斐波那契数列 假设我们需要使用矩阵快速幂求解第 \(n\) 项斐波那契数列,则可以通过如下构造矩阵来进行计算: \[ M = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, V_0 = \begin{bmatrix} F(1)\\ F(0) \end{bmatrix} = \begin{bmatrix} 1\\ 0 \end{bmatrix}. \] 那么有 \(\text{{result}} = M^{n-1} \times V_0\) 表示最终的结果向量[^3]。 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值