取模规则
结合律:(a + b) % m = ((a % m) + (b % m)) % m
分配律:a * (b + c) % m = (a * b % m + a * c % m) % m
乘法结合律:(a * b) % m = (a % m * b % m) % m
幂的取模:a^n % m = (a % m)^n % m
可以看下面洛谷上的一道模板题,先理解一下:3^18%b =(3^2) ^9%b= (9^2) ^4*3%b,所以需要想的是,将指数不断除以2,以减少计算。
【模板】快速幂
输入格式
输入只有一行三个整数,分别代表 a , b , p a,b,p a,b,p。
输出格式
代码
输出一行一个字符串 a^b mod p=s
,其中
a
,
b
,
p
a,b,p
a,b,p 分别为题目给定的值,
s
s
s 为运算结果。
#include<iostream>
using namespace std;
#define int long long
int qpow(int a,int b,int c)
{
int ans=1;
while(b)
{
if(b&1)
ans=ans*a%c;
a=a*a%c;
b>>=1;
}
return ans;
}
signed main()
{
ios::sync_with_stdio(0);
string b;
int a,c,ans=1;
cin>>a>>b>>c;
cout<<a<<"^"<<b<<" mod "<<c<<"=";
ans=1;
for(int i=b.size()-1;i>=0;i--)
{
ans=ans*qpow(a,b[i]-'0',c)%c;
if(i!=0)//这个无关紧要,因为变得是a,而最后时a的值不影响
a=qpow(a,10,c)%c;//将底数变成a^10%c
}
cout<<ans<<endl;
}
学完后,可以看看我下一篇矩阵快速幂