hdu 1542 Atlantis(线段树 线性扫描)

原创 2017年01月03日 10:06:24
Problem Description
There are several ancient Greek texts that contain descriptions of the fabled island Atlantis. Some of these texts even include maps of parts of the island. But unfortunately, these maps describe different regions of Atlantis. Your friend Bill has to know the total area for which maps exist. You (unwisely) volunteered to write a program that calculates this quantity.
 

Input
The input file consists of several test cases. Each test case starts with a line containing a single integer n (1<=n<=100) of available maps. The n following lines describe one map each. Each of these lines contains four numbers x1;y1;x2;y2 (0<=x1<x2<=100000;0<=y1<y2<=100000), not necessarily integers. The values (x1; y1) and (x2;y2) are the coordinates of the top-left resp. bottom-right corner of the mapped area.

The input file is terminated by a line containing a single 0. Don’t process it.
 

Output
For each test case, your program should output one section. The first line of each section must be “Test case #k”, where k is the number of the test case (starting with 1). The second one must be “Total explored area: a”, where a is the total explored area (i.e. the area of the union of all rectangles in this test case), printed exact to two digits to the right of the decimal point.

Output a blank line after each test case.
 

Sample Input
2 10 10 20 20 15 15 25 25.5 0
 

Sample Output
Test case #1 Total explored area: 180.00
 

Source
 


题意:给你n个矩形,求它们的面积,重复的不重复计算

思路:线段树的线性扫描,由于坐标可能很大,需要先离散化处理;

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=105;
struct node1{
    double x1,x2,h;
    int f;
}s[2*N];
struct node2{
    int l,r,cnt;
    double len;
}str[6*N];
double a[2*N];
bool cmp(node1 aa,node1 bb)
{
    return aa.h<bb.h;
}
int find(double x,int l,int r)
{
    while(l<=r)
    {
        int temp=(l+r)/2;
        if(x==a[temp]) return temp;
        else if(x<a[temp]) r=temp-1;
        else l=temp+1;
    }
}
void build(int l,int r,int n)
{
    str[n].l=l;
    str[n].r=r;
    str[n].len=0;
    str[n].cnt=0;
    if(l==r)
        return;
    int temp=(l+r)/2;
    build(l,temp,2*n);
    build(temp+1,r,2*n+1);
}
void add(int n)
{
    if(str[n].cnt)
        str[n].len=a[str[n].r+1]-a[str[n].l];
    else if(str[n].l==str[n].r)
        str[n].len=0;
    else
        str[n].len=str[2*n].len+str[2*n+1].len;
}
void updata(int l,int r,int flag,int n)
{
    if(l==str[n].l&&r==str[n].r)
    {
        str[n].cnt+=flag;
        add(n);
        return;
    }
    int temp=(str[n].l+str[n].r)/2;
    if(r<=temp)
        updata(l,r,flag,2*n);
    else if(l>temp)
        updata(l,r,flag,2*n+1);
    else
    {
        updata(l,temp,flag,2*n);
        updata(temp+1,r,flag,2*n+1);
    }
    add(n);
}
int main()
{
    int n;
    int t=1;
    while(~scanf("%d",&n))
    {
        if(n==0) break;
        for(int i=0;i<n;i++)
        {
            double x1,y1,x2,y2;
            scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
            s[2*i].x1=x1;s[2*i].x2=x2;s[2*i].h=y1;s[2*i].f=1;
            s[2*i+1].x1=x1;s[2*i+1].x2=x2;s[2*i+1].h=y2;s[2*i+1].f=-1;
            a[2*i]=x1;a[2*i+1]=x2;
        }
        sort(s,s+2*n,cmp);
        sort(a,a+2*n);
        int len=1;
        double temp=a[0];
        for(int i=1;i<2*n;i++)
            if(temp!=a[i])
            {
                a[len++]=a[i];
                temp=a[i];
            }
        build(0,len-1,1);
        double ans=0;
        for(int i=0;i<2*n;i++)
        {
            int l=find(s[i].x1,0,len-1);
            int r=find(s[i].x2,0,len-1)-1;
            updata(l,r,s[i].f,1);
            ans+=str[1].len*(s[i+1].h-s[i].h);
        }
        printf("Test case #%d\n",t++);
        printf("Total explored area: %.2lf\n\n",ans);
    }
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

【理解】线段树——扫描线

原文:http://www.cnblogs.com/kane0526/archive/2013/02/26/2934214.html 题目大意: 给你n个矩形,求他们的总面积之和。 解题思路:...
  • otowa
  • otowa
  • 2016年02月19日 07:56
  • 1133

线段树 + 扫描线加深详解

在线段树中的扫描线主要是解决矩形面积以及周长问题,比如下图 让你求解所有矩形覆盖的面积和,或者是周长和,如果用寻常的方法,非常之麻烦,而且效率也不高,这里就会用到线段树的扫描线 扫描线...
  • qq_18661257
  • qq_18661257
  • 2015年08月14日 11:17
  • 1130

POJ 1177 线段树+扫描线

题意给一堆正方形,问组合图形周长题解首先可以做扫描线入门题HDU 1542。了解了扫描线的原理之后,这道题其实就非常简单了。尤其是POJ还没有判重边。 可以直接用最粗暴的方式,横向扫描一次,纵向扫描...
  • zhenlingcn
  • zhenlingcn
  • 2017年08月08日 11:12
  • 100

【线段树+扫描线】HDU 1542+1255

【线段树+扫描线】 简单的说就是从下到上扫描线段,累加记录该线段添加进去之后在总区间的映射有效长度*高度差。 线段树扫描线详解:矩形面积的并:http://www.cnblogs.com/sca...
  • Jane_JXR
  • Jane_JXR
  • 2017年08月11日 16:27
  • 138

HDU 1542 Atlantis (线段树 + 扫描线 + 离散化)

Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total...
  • qq_18661257
  • qq_18661257
  • 2015年08月13日 22:13
  • 1329

HDU-1542-Atlantis-线段树+面积并(模板)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1542 看了很短网上的博客,都写得很不错,我就是学着这篇博客写的,链接:http://www.cnbl...
  • wlxsq
  • wlxsq
  • 2015年08月03日 13:12
  • 977

hdu 1542 矩形面积并(扫描线+线段树)

【题目链接】 http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=14795 【解题报告】 七月的时候做过扫描线线段树,那个时...
  • gungnir0711
  • gungnir0711
  • 2015年12月16日 07:46
  • 537

CDOJ 1058 秋实大哥与家 线段树+扫描线

有一个W*H的矩阵 ,里面有n个家具,相互之间互不重叠。现在有一个1*M的家具,想问有多少种放法(横放,竖放都可以) 对于每个矩形(家具),我们把它横向向x轴正方向延长M-1个单位,然后,所有剩下的...
  • code12hour
  • code12hour
  • 2016年03月11日 18:31
  • 278

hdu 1542 线段树之扫描线之面积并

点击打开链接 题意:给你n个矩形,求它们的面积,重复的不重复计算 思路:用线段树的扫描线完成,将X坐标离散化后,从下到上扫描矩形,进行各种处理,看代码注释把#include #include ...
  • Dan__ge
  • Dan__ge
  • 2016年03月24日 20:44
  • 1145

HDU - 1542 Atlantis (线段树)

题意:给出每个矩形的左下角,右上角,求所有矩形的并面积,就是不重复计算重复的部分 思路:线段树的一个应用,还是太年轻,看了别人的方法点击打开链接 #include #include #incl...
  • u011345136
  • u011345136
  • 2014年04月16日 21:39
  • 576
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:hdu 1542 Atlantis(线段树 线性扫描)
举报原因:
原因补充:

(最多只允许输入30个字)