OSTU定点化

原创 2015年07月10日 11:37:01
#include "opencv2/opencv.hpp"
#include <iostream>
using namespace cv;
using namespace std;
typedef long long ll;
typedef long long tp;
int postu(IplImage *src); //定点化,没考虑图像大小,没有对变量范围考虑,统一使用long long格式
int ddostuBigImage(IplImage *src);//图像大小为1000*1000以上时使用
int ddostuSmallImage(IplImage *src);//图像大小为100*100以下时使用

#include "stdafx.h"
#include "dingdian.h"
int ddostuSmallImage(IplImage *src)
{
	int height=src->height;    
	int width=src->width;   
	uchar histogram[256]={0};
	uchar * p;
	for ( int i=0; i<height; ++i )
	{
		p=(unsigned char*)src->imageData + src->widthStep * i; 
		for ( int j=0; j<width; ++j )
		{
			histogram[*p++]++;  
		}
	}

	short size = height * width;
	int avgValue = 0;    
	for(int i=0; i < 256; i++)  
	{    
		avgValue += i * histogram[i];  //整幅图像的平均灰度  
	}  
	int threshold=0;      
	int maxVariance = 0;    
	int w = 0;
	int u = 0;  

	for(int i = 0; i < 256; i++)   
	{    
		w += histogram[i];  //假设当前灰度i为阈值, 0~i 灰度的像素(假设像素值在此范围的像素叫做前景像素) 所占整幅图像的比例  
		u += i * histogram[i];  // 灰度i 之前的像素(0~i)的平均灰度值: 前景像素的平均灰度值  
		unsigned short t = avgValue * w/size - u; 
		unsigned short variance = (t * t)/((long long)w*(size-w)+1);
		if(variance > maxVariance)   
		{    
			maxVariance = variance;    
			threshold = i;    
		} 
	}    
	return threshold; 
}
int ddostuBigImage(IplImage *src)
{
	int height=src->height;    
	int width=src->width;   
	short histogram[256]={0};
	uchar * p;
	for ( int i=0; i<height; ++i )
	{
		p=(unsigned char*)src->imageData + src->widthStep * i; 
		for ( int j=0; j<width; ++j )
		{
			histogram[*p++]++;  
		}
	}

	int size = height * width;
	int avgValue = 0;    
	for(int i=0; i < 256; i++)  
	{    
		avgValue += i * histogram[i];  //整幅图像的平均灰度  
	}  
	
	int threshold=0;      
	int maxVariance = 0;    
	int w = 0;
	int u = 0;  
	for(int i = 0; i < 256; i++)   
	{    
		w += histogram[i];  //假设当前灰度i为阈值, 0~i 灰度的像素(假设像素值在此范围的像素叫做前景像素) 所占整幅图像的比例  
		u += i * histogram[i];  // 灰度i 之前的像素(0~i)的平均灰度值: 前景像素的平均灰度值  
		long long t = (long long)avgValue * w/size - u; 
		int variance = (t * t)/((long long)w*(size-w)+1);
		//cout<<variance<<" ";
		if(variance > maxVariance)   
		{    
			maxVariance = variance;    
			threshold = i;    
		} 
				//cout<<threshold<<" ";
	}    
	return threshold; 
}
int postu(IplImage *src)
{
	int height=src->height;    
	int width=src->width;        

	//histogram    
	long histogram[256] = {0};    
	unsigned char* p;
	for(int i=0; i < height; i++)  
	{    
		p=(unsigned char*)src->imageData + src->widthStep * i;    
		for(int j = 0; j < width; j++)   
		{    
			histogram[*p++]++;   
		}    
	}   

	//normalize histogram    
	tp size = height * width;    

	/*	for(int i = 0; i < 256; i++)  
	{    
	histogram[i] = histogram[i] / size;    
	} */   

	//average pixel value    
	tp avgValue = 0;    
	for(int i=0; i < 256; i++)  
	{    
		avgValue += i * histogram[i];  //整幅图像的平均灰度  
	}     
	int threshold=0;      
	tp maxVariance = 0;    
	tp w = 0, u = 0;    
	for(int i = 0; i < 256; i++)   
	{    
		w += histogram[i];  //假设当前灰度i为阈值, 0~i 灰度的像素(假设像素值在此范围的像素叫做前景像素) 所占整幅图像的比例  
		u += i * histogram[i];  // 灰度i 之前的像素(0~i)的平均灰度值: 前景像素的平均灰度值  
		tp t = avgValue * w/size - u;  
		//float  variance = (t * t) / (float)(w * (size - w)); 
		tp variance = (t * t)/(w*(size-w)+1);
		//cout<<variance<<endl;
		//system("pause");
		//float variance = (t*t*size*size)/(w*(size-w)*size)+0.5;
		if(variance > maxVariance)   
		{    
			maxVariance = variance;    
			threshold = i;    
		}  
		//cout<<threshold<<" ";
	}    
	return threshold;    
}
 
<pre class="cpp" name="code">// opencv300.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h"
#include "opencv2/core/utility.hpp"
#include "opencv2/core/ocl.hpp"
#include "opencv2/video/tracking.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/videoio/videoio.hpp"
#include "opencv2/highgui/highgui.hpp"

#include <iostream>
#include <cctype>
using namespace cv;
using namespace std;
#include "dingdian.h"

int Otsu(IplImage* src)    
{    
	int height=src->height;    
	int width=src->width;        

	//histogram    
	float histogram[256] = {0}; 
	unsigned char* p;
	for(int i=0; i < height; i++)  
	{    
		 p=(unsigned char*)src->imageData + src->widthStep * i;    
		for(int j = 0; j < width; j++)   
		{    
			histogram[*p++]++;    
		}    
	}    
	//normalize histogram    
	int size = height * width;    
	for(int i = 0; i < 256; i++)  
	{    
		histogram[i] = histogram[i] / size;    
	}    

	//average pixel value    
	float avgValue=0;    
	for(int i=0; i < 256; i++)  
	{    
		avgValue += i * histogram[i];  //整幅图像的平均灰度  
	}     

	int threshold;      
	float maxVariance=0;    
	float w = 0, u = 0;    
	for(int i = 0; i < 256; i++)   
	{    
		w += histogram[i];  //假设当前灰度i为阈值, 0~i 灰度的像素(假设像素值在此范围的像素叫做前景像素) 所占整幅图像的比例  
		u += i * histogram[i];  // 灰度i 之前的像素(0~i)的平均灰度值: 前景像素的平均灰度值  

		float t = avgValue * w - u;  
		/*cout<<t*size<<endl;
		cout<<w*size<<endl;
		system("pause");*/
		float variance = t * t / (w * (1 - w)+0.00001); 
		//float variance = (t*t*size*size)/(w*(size-w)*size)+0.5;
		if(variance > maxVariance)   
		{    
			maxVariance = variance;    
			threshold = i;    
		}  
		//cout<<variance<<" ";
		//system("pause");
	}    
	return threshold;    
}   


int main(int argc, const char ** argv)
{
	Mat img = imread("C:\\test3\\1\\5.jpg");
	double t = (double)getTickCount();
	int thres = Otsu(&IplImage(img));
	t = ((double)getTickCount() - t)*1000/getTickFrequency();
	cout<<thres<<endl;
	cout<<"浮点 "<<t<<endl;

	t = (double)getTickCount();
	int thres2 = postu(&IplImage(img));
	t = ((double)getTickCount() - t)*1000/getTickFrequency();
	cout<<thres2<<endl;
	cout<<"修改 "<<t<<endl;

	t = (double)getTickCount();
	int thres3 = ddostuBigImage(&IplImage(img));
	t = ((double)getTickCount() - t)*1000/getTickFrequency();
	cout<<thres3<<endl;
	cout<<"大图 "<<t<<endl;

	t = (double)getTickCount();
	int thres4 = ddostuSmallImage(&IplImage(img));
	t = ((double)getTickCount() - t)*1000/getTickFrequency();
	cout<<thres4<<endl;
	cout<<"小图 "<<t<<endl;

	/*UMat uimg = img.getUMat(ACCESS_READ);
	int thres1 = Uotsu(uimg);
	cout<<thres1<<endl;*/
	cin>>thres;
	//int thres=Otsu(&IplImage(binaryImage))+10;
	//threshold(binaryImage,binaryImage,thres,255,1);

}



相关文章推荐

ostu定点加速程序

  • 2015年07月10日 11:44
  • 6KB
  • 下载

ostu 阈值分割 二值化

  • 2010年03月29日 14:20
  • 169KB
  • 下载

OSTU最佳阈值法二值化原理-matlab和C

觉得这篇介绍OTSU方法挺清楚的。自己又加了一些,希望对初学者有帮助哦~  转载:http://blog.csdn.net/WuHaibing_CVer OTSU算法是由日本学者OTSU于...

图像Ostu二值化原理及matlab实现代码

Ostu假设图像是由前景区域和背景区域两部分组成的,通过遍历计算不同阈值(通常为[0 255]区间范围内)下分割结果中前景区域和背景区域的灰度直方图,然后比较两者之间的方差,使得方差最大化的那个灰度阈...

Ostu(大津法)二值化图像简介

一、前言 Ostu方法又名最大类间差方法,通过统计整个图像的直方图特性来实现全局阈值T的自动选取,其算法步骤为: 1)  先计算图像的直方图,即将图像所有的像素点按照0~255共256个bin,统计落...

图像基本变换---图像二值化(包含OSTU/迭代法/统计法/双峰法/P分位法/最大熵法)

本文详细介绍了图像基本变换---图像二值化(包含OSTU/迭代法/统计法/双峰法/P分位法/最大熵法)的相关知识,并 给出了完整程序DEMO的下载链接,跟大家分享一下,希望大家喜欢!...

毕业课题---之ostu算法二值化

二值化ostu算法: #include "stdafx.h" #include   #include   #include   #include   int Otsu(Ip...

pdf417项目.(1)OSTU二值化

首先记录一下理论基础(虽然我TM也不怎么懂) 大津算法: 算法假定该图像根据双模直方图包含两类像素: 前景像素和背景像素 于是它要计算能将两类分开的最佳阈值, 使得它们的类 内方差最小; 由于两两平方...

图像基本变换---图像二值化(包含OSTU/迭代法/统计法/双峰法/P分位法/最大熵法)

OSTU法图像二值化 [算法说明]   Ostu法又叫做最大类间方差法,是一种常用的图像分割算法。基本算法思想是根据初始阈值把图像分为两类,然后计算两类之间的方差,更新阈值,重新计算类间方差,当满...

ostu阈值分割

  • 2017年07月13日 16:42
  • 14KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:OSTU定点化
举报原因:
原因补充:

(最多只允许输入30个字)