AP1005834的博客

私信 关注
ForeverYang2015
码龄9年

IT搬砖工!

  • 383,567
    被访问量
  • 69
    原创文章
  • 16,105
    作者排名
  • 314
    粉丝数量
  • 于 2011-10-19 加入CSDN
获得成就
  • 获得129次点赞
  • 内容获得169次评论
  • 获得559次收藏
荣誉勋章
兴趣领域
  • #人工智能
    #算法#图像处理#数据分析#深度学习#机器学习#Python#神经网络#视觉/OpenCV
TA的专栏
  • 目标检测
    3篇
  • opencv
    16篇
  • C/C++
    18篇
  • Matlab
    4篇
  • python
    6篇
  • Linux
    6篇
  • 机器学习算法的一些理解总结
    5篇
  • CUDA
    6篇
  • caffe
    18篇
  • 最近
  • 文章
  • 资源
  • 问答
  • 课程
  • 帖子
  • 收藏
  • 关注/订阅

modprobe: FATAL: Module nvidia-uvm not found 解决方法

一、前言       在linux系统上使用cuda时遇到个狗血问题,出现modprobe: FATAL: Module nvidia-uvm not found 错误,查找资料发现是modprobe无法加载nvidia-uvm模块二、解决方法       终端输入:       sudo updatedb       locate --regex nvidia.*uvm.ko
原创
10543阅读
2评论
1点赞
发布博客于 4 年前

opencv 读取一帧时间及imshow耗时

一、前言由于想知道自己电脑i7 使用opencv读取一帧速度,测试视频大小为480*640,发现当使用VideoCapture::read()读取一帧,并用imshow显示图像,总共需耗时15ms左右,相当于每秒66帧左右,分别对两个函数测试时,发现单读取一帧只需0.7~1.2ms,而使用imshow显示图像则函数较为严重,显示一帧需14ms左右。二、代码#include #incl
原创
11208阅读
5评论
1点赞
发布博客于 5 年前

使用python读写VOC2007形式存放的xml标签文件

一、前言 本节主要记录,使用python读写VOC2007形式存放的xml标签文件二、XML 标签文件格式打开一个已打标注的XML文件,如下所示:三、使用python读写其中的标注信息xmin ymin xmax ymaximport xml.etree.ElementTree as ETdef fixXml( xml_path): tree=ET.parse(xml_path)#打开文件 root = tree.getroot() #.
原创
87阅读
0评论
0点赞
发布博客于 4 月前

目标检测学习(2)map计算

一、前言 本篇主要介绍Map的计算,主要参考以下两篇文章https://blog.csdn.net/hsqyc/article/details/81702437https://blog.csdn.net/zhou4411781/article/details/105839357二、TP、TN、FP、FN这4个值由以下图就很好理解了TP:实际为真,预测为真TN:实际为假,预测为假FP:实际为假,预测为真FN:实际为真,预测为假三、Accuracy、Precis...
原创
79阅读
0评论
0点赞
发布博客于 5 月前

目标检测学习(1)yolo-v4 训练、检测及评测

一、前言 本篇主要记录对yolo4进行训练、检测及评测二、下载好代码及编译到作者官网 下载代码,git clone https://github.com/AlexeyAB/darknet.git打开makefile文件进行修改,文件修改如下,当然要先装好CUDA10.0和cudnn后执行make -j8三、在darknet根目录下创建VOCdevkit数据集 数据集的格式采用VOC2007,详见如下图JPEGImages:放图片ImageSet...
原创
311阅读
0评论
0点赞
发布博客于 5 月前

Faster rcnn alt opt 训练方法总结

一、前言 本篇主要记录Faster rcnn 采用alt opt 训练方式做训练二、制作自己的VOC2007格式的数据集 这一部分可以参考 end to end 训练篇https://mp.csdn.net/postedit/96730858的章节二,这里不再重复三、采用VGG_CNN_M_1024模型训练1 、修改models/pascal_voc/VGG_CN...
原创
270阅读
0评论
0点赞
发布博客于 2 年前

Faster rcnn end to end 训练方法总结

一、前言 本篇主要记录Faster rcnn 采用end to end 训练方式做训练二、制作自己的VOC2007格式的数据集1、首先创建好路径 py-faster-rcnn/data/VOCdevkit2007/VOC20072、在VOC2007下分别创建文件夹Annotations 、JPEGImages、ImageSets/Main3、把图片按照 00000×...
原创
442阅读
0评论
0点赞
发布博客于 2 年前

炒冷饭-Alexnet、vggnet、Google Inception Net、resNet、resnet后续改进

一、前言     本篇转载自 https://blog.csdn.net/m0_37733057/article/details/70232378 , 文章对经典的深度神经网络的发展做了一些概括,另外这里也加了一些补充说明二、Alexnet    AlexNet是现代深度CNN的奠基之作。2012年,Hinton的学生Alex Krizhevsky提出了深度卷积神经网络模型AlexNe...
转载
606阅读
0评论
1点赞
发布博客于 3 年前

caffe之保存和读入caffmodel文件

一、caffe如何将卷积层或网络层的权值blob给保存下来的? 首先Solver类在Step(intiters)中调用了Snapshot()函数,在voidSolver<Dtype>::Snapshot()函数中能看到保存caffemodel文件的重要函数 SnapshotToBinaryProto(),该函数详细如下:可看到该函数里初始化了NetParameternet_param...
原创
5417阅读
0评论
0点赞
发布博客于 3 年前

c++中的 虚函数 纯虚函数 虚基类

一、前言     原文转载自 https://blog.csdn.net/a345203172/article/details/21697687,为了理解下C++中虚函数 纯虚函数 虚基类的基础知识点。二、虚函数 纯虚函数 虚基类三者区别          1.虚函数是用于多态中virtual修饰父类函数,确保父类指针调用子类对象时,运行子类函数的。    2.纯虚函数是用来定义接口的,也就是基类...
转载
1689阅读
0评论
4点赞
发布博客于 3 年前

ctags+taglist+winmanger 打造vim 编辑器

一、前言      本篇主要使用ctags+taglist+winmanger 将 vim 编辑器打造为具有IDE般的功能      ctags:是vim下方便代码阅读的工具,通过这一工具能够很方便的追溯变量、函数的定义以及调用      taglist:与ctags搭配使用,将在vim的左侧或右侧开启一个窗口,在该窗口显示当前文件中有哪些变量、函数,并可进行快速                 ...
原创
314阅读
0评论
0点赞
发布博客于 3 年前

pthread学习笔记《三》死锁

一、前言     这篇主要分析造成死锁的原因和解决的一些方法,转载自 http://blog.csdn.net/ls5718/article/details/51896159二、死锁的定义     多线程以及多进程改善了系统资源的利用率并提高了系统 的处理能力。然而,并发执行也带来了新的问题——死锁。所谓死锁是指多个线程因竞争资源而造成的一种僵局(互相等待),若无外力作用,这些进程
转载
397阅读
0评论
0点赞
发布博客于 3 年前

pthread学习笔记《二》互斥量和条件变量

一、前言        本篇主要讨论线程同步、互斥量等概念二、
转载
179阅读
0评论
0点赞
发布博客于 3 年前

pthread学习笔记(一) 基本用法

一、前言       phtread类库,也即是“POSIX线程”,pthreads定义了一套C语言的类型、函数与常量,它以pthread.h头文件和一个线程库实现二、phtread 数据类型pthread_t: 线程标识符pthread_mutex_t: 互斥量pthread_code_t: 条件变量pthread_key_t: 线程私有权握访问键pthread_at
转载
1056阅读
0评论
2点赞
发布博客于 3 年前

《linux命令行和shell脚本编程大全》之命令行知识点记录

一、第3章--基本bash shell 命令1.1 链接文件      链接是linux里用于在系统上维护同一文件的两份或多份副本的一种方法,linux有两种不同链接,软链接(符号链接)和硬链接。1.1.2 符号链接      符号链接创建方法:      ln -s a.txt  a_link      符号连接特点如下:      1、a_link指向 a.txt ...
转载
243阅读
0评论
0点赞
发布博客于 3 年前

将cpp文件封装成 so 文件并调用

一、前言    本篇记录下将 Cpp文件打包成so 文件,并在其他cpp文件中作调用二、将cpp文件编译为so文件在文件夹 cpp1 下创建a.h a.cpp b.h b.cpp 如下://a.h#ifndef A_H_#define A_H_#include "b.h"class A{ public: A(){} ~A(){} void showImg(char* pa...
原创
8733阅读
0评论
3点赞
发布博客于 3 年前

牛客网上的题总结下 python解法

1.二维数组的查找描述:在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。class Solution: # array 二维列表 def Find(self, target, array): # write code here row...
原创
2430阅读
0评论
0点赞
发布博客于 3 年前

由MTCNN关键点估计人头姿态

一、前言      本篇主要记录由mtcnn检测得的关键点作人头姿态估计,思路较为简单,mtcnn是一种可以检测输出5个关键点的人脸检测算法,分别是左眼,右眼,鼻尖,嘴的左角和嘴的右角。当获得图像中人脸的5个2D关键点,再由Opencv中POSIT的姿态估计算法将5个世界坐标系的模板3D关键点通过旋转、平移等变换投射至这5个2D关键点,进而估计得变换参数,最后求得2D平面中的人头的姿态参数,分别为...
转载
6308阅读
6评论
0点赞
发布博客于 3 年前

caffe中新增自己的激活函数层_C++实现

一、前言    本篇主要转载自一个视频教程,主要实现在caffe中新增自己的层。二、具体做法     自定义一个计算层,实现y=x^power+bur的功能,事实上这个新层为激活函数层三、实现的方法思路           (1)任何一个层都可以被继承,然后进行重写函数    (2)尽量确保要实现的功能是否必须要自己写,不然尽量用已有的层,每一个层在caffe/incl...
转载
1037阅读
0评论
0点赞
发布博客于 3 年前

caffe 提取特征C++接口

一、前言     以下为使用caffe的C++接口提取某层的特征向量,作下记录,一下两种方式耗时基本相同。二、方式一//CaffeExFeat.h#ifndef CAFFEEXFEAT_H #define CAFFEEXFEAT_H#include "caffe/caffe.hpp"#include <string>#include <vector>#incl...
转载
1103阅读
0评论
2点赞
发布博客于 3 年前

C++简单的单生产者单消费者模式

一、前言         本例展示简单的单生产者单消费者模式,一个生产进程,另一个进程消费,当缓冲区满时,不能往缓冲区放数据,当缓冲区空时,不能从缓冲区取数据。二、代码#include<condition_variable> #include<mutex> #include<thread> #include<iostream> #in...
转载
1202阅读
0评论
0点赞
发布博客于 3 年前

将C++源码封装为dll,并提供接口给调用

一、前言       本文主要记录将某个cpp函数在vs上封装为dll ,并在另一cpp中调用该dll 接口。二、欲封装的源码//MOG_BGS3.h#include "opencv2/core/core.hpp"#include #include"cv.h"#include using namespace cv;namespace OurMogBgs{ class
原创
6861阅读
1评论
2点赞
发布博客于 4 年前

find、sed、grep、awk

一、前言  这三个命令可谓是linux命令行常用命令,本篇记录各自的用法。二、sed
转载
376阅读
0评论
0点赞
发布博客于 4 年前

caffe 训练过程源码层理解

一、前言       本文主要部分转载自 https://buptldy.github.io/2016/10/09/2016-10-09-Caffe_Code/,并加入一些自己的见解      本篇主要重点分析 caffe训练过程相关的主要代码。二、caffe训练main函数入口      这里以训练lenet模型(入门必备)为例, 训练 lenet 网络模型的基本命令为 ./
转载
1381阅读
1评论
1点赞
发布博客于 4 年前

codeblock配置caffe

一、前言      由于gdb调试caffe诸多不易,为节约时间,使用codeblock调试caffe,有助于理解caffe源码,这里记录配置过程,这要参考以下博文二、配置前提1.安装好caffe,并配置好环境,由于只是为了理解源码,故使用CPU模型,容易配置些,故在Makefile需将以下的注释去掉CPU_ONLY := 1OPENCV_VERSION := 3之
原创
579阅读
0评论
0点赞
发布博客于 4 年前

网络协议点滴总结

一、OSI 七层模型中工作的协议应用层:    HTTP、SMTP、SNMP、FTP、Telnet、DNS、SIP、SSH、NFS、RTSP、XMPP、Whois、ENRP表示层:    XDR、ASN.1、SMB、AFP、NCP会话层:    ASAP、TLS、SSH、ISO 8327 / CCITT X.225、RPC、NetBIOS、ASP、Winsock、BSD sockets
原创
434阅读
0评论
0点赞
发布博客于 4 年前

Hash 查找

一、前言       哈希查找的资料就看这里吧  http://blog.csdn.net/xiaoping8411/article/details/7706376 ,哈希查找的本质就是定好表长,创建哈希表,哈希表上的表格就像桶子一样,需要将数据点,先映射为key值(防止奇怪的取值),之后再使用哈希函数映射为哈希地址,各个数据点的地址应该尽可能无规律和尽可能地分散,避免2个以上数据对应对应同个
原创
312阅读
0评论
0点赞
发布博客于 4 年前

回溯法求解数组中和为固定值的所有元素集合

一、前言       本文参考自http://blog.csdn.net/u012462822/article/details/51193689,找出数组中和为固定值的所有元素集合,常用的思路是先进行排序,之后再用回溯的方法不断尝试所有可能集合。以下先用快速排序(写得有点烂)降序,再找出降了序的数组中和为某值的所有元素集合二、回溯法      代码如下#include #incl
原创
1901阅读
0评论
1点赞
发布博客于 4 年前

python 读入多行数据

一、前言      本文主要使用python 的raw_input() 函数读入多行不定长的数据,输入结束的标志就是不输入数字情况下直接回车,并填充特定的数作为二维矩阵二、代码def get2DlistData(): res = [] inputLine = raw_input() #以字符串的形式读入一行 #如果不为空字符串作后续读入 wh
原创
15944阅读
0评论
0点赞
发布博客于 4 年前

caffe下使用g++编译cpp文件时 遇到 fatal error: cublas_v2.h: 没有那个文件或目录

一、前言       在caffe下使用g++编译cpp文件生成bin文件时突然遇到 fatal error: cublas_v2.h: 没有那个文件或目录 这个吐血问题,通过查找资料找到解决的方法了二、g++编译生成bin文件       本人的编译命令是 g++   ***.cpp  -o  ***.bin -I /caffe-root/include  -I /caffe-roo
原创
2999阅读
0评论
0点赞
发布博客于 4 年前

八大排序

1. 前言        本文主要是记录常用的排序和查找算法。2.1
原创
601阅读
0评论
0点赞
发布博客于 4 年前

目标检测算法中的bounding box regression

原文转载于:http://blog.csdn.net/elaine_bao/article/details/60469036一、前言       一些目标检测算法如R-CNN、Fast RCNN中都用到了bounding box回归,回归的目标是使得预测的物体窗口向groundtruth窗口相接近二、做边框回归的原因
转载
6538阅读
2评论
4点赞
发布博客于 4 年前

yolo v2之车牌检测后续识别字符(二)

一、前言       这一篇续接前一篇《yolo v2之车牌检测后续识别字符(一)》,主要是生成模型文件、配置文件以及训练、测试模型。二、python接口生成配置文件、模型文件       车牌图片端到端识别的模型文件参考自这里,模型图如下所示:        本来想使用caffe的python接口生成prototxt,结果发现很麻烦,容易出错,直接在可视化工具nets
原创
9085阅读
8评论
2点赞
发布博客于 4 年前

yolo v2之车牌检测后续识别字符(一)

一、前言       本篇续接前一篇 yolo v2 之车牌检测 ,前一篇使用yolo v2已经可以很准确地框出车牌图片了,这里完成后续的车牌字符号码的识别,从车牌框框中要识别出车牌字符,笔者能想到3种思路,1种是同样yolo、SSD等深度学习目标检测的方法直接对车牌内的字符识别;第2种是传统方法从框里切分字符,再训练深度学习的模型对各个字符做识别;第3种方法就是端到端的车牌图片识别。在车牌图
原创
14377阅读
13评论
0点赞
发布博客于 4 年前

3922张仅包含车牌的图片,图片名字表示车牌号码

3922张仅仅包含车牌的图片,从完整图片上切割下来的,并且每张图片的名字包含车牌号码,可以用作深度学习或其他机器学习的数据集,本人是用来学习深度学习多标签分类
rar
发布资源于 4 年前

yolo v2 之车牌检测

一、前言        本文主要使用yolo v2 训练自己的车牌图片数据,并能够框出测试图片中存在的车牌区域,也即车牌检测。本文参考了博文http://m.blog.csdn.net/qq_34484472/article/details/73135354和http://blog.csdn.net/zhy8623080/article/details/73188542二、准备工作
原创
16936阅读
31评论
3点赞
发布博客于 4 年前

使用requests模块下载爬虫百度图片

一、前言       在github上找到个输入关键词和下载数量即可爬虫多张百度图片的方法,实际测试发现不支持中文关键词,并且最多只能下载60张以内,经过修改后可支持中文,并能下载多张图片。二、代码       首先需要安装requests模块,该方法主要是使用http://image.baidu.com/search/flip?tn=baiduimage&ie=utf-8&word=
原创
7572阅读
5评论
5点赞
发布博客于 4 年前

使用caffe的python接口预测多张图片

一、前言       根据前面博文 使用lenet模型训练及预测自己的图片数据 可得到训练得的caffemodel及其他相关的文件,回顾下My_FIle文件夹如下,predictPic文件夹中保存的是名为“0“~“9“的文件夹,分别保存相应的0~9的多张字符图片:         使用classification.bin只能预测单张图片,或者使用caffe.bin test
原创
2271阅读
0评论
1点赞
发布博客于 4 年前

libsvm中OC-SVM 调参问题

一、前言        本文主要讨论libsvm中的OCSVM调参问题,参考了博文http://www.voidcn.com/blog/lplpysys/article/p-3920288.html,OCSVM是一类SVM,即适用于训练样本均为正样本,或者负样本极少的分类模型,二、libsvm-OCSVM相关参数       针对模型参数的训练主要使用svmtrain函数。
原创
2943阅读
2评论
0点赞
发布博客于 4 年前

使用lenet模型训练及预测自己的图片数据

一、前言本文主要尝试将自己的数据集制作成lmdb格式,送进lenet-5作训练和测试,参考了http://blog.csdn.net/liuweizj12/article/details/52149743和http://blog.csdn.net/xiaoxiao_huitailang/article/details/51361036这两篇博文二、从训练模型到使用模型预测图片分类(1)
原创
8060阅读
2评论
1点赞
发布博客于 4 年前

CNN反向传播训练参数过程

一、前言      人共神经网络的训练主要采用梯度下降算法,计算过程采用误差反向传播(BP)的方式计算误差函数对全部权值和偏置的梯度,由该梯度更新训练参数,CNN卷积神经网络也可采用基于BP的梯度下降算法。二、交叉熵代价函数
原创
7268阅读
0评论
4点赞
发布博客于 4 年前

lenet-5结构

一、lenet-5 结构      lenet-5结构图如下所示,不包括输入,则共有7层    其各层可训练权值和偏置个数为:INPUT -> C1: 6个5*5大小模板及6个偏置,共有6*(5*5+1) =156个训练参数C1 -> S2: 6个常数权值及6个偏置,共有6+6 = 12 个训练参数S2 -> C3: 模板大小仍为5*5,C3所生成的16个特征图与S2的
原创
983阅读
0评论
0点赞
发布博客于 4 年前

llibsvm-svdd 用法示例

一、前言       SVDD是一类分类方法,通过已知的一类数据训练包含所有数据的超球面,对于待检测数据点,如果数据点落在该超球面内,则属于该类,否则不是。这篇博文讲解了SVDD原理 http://blog.sina.com.cn/s/blog_4ff49c7e0102vlbv.html   ,从中可知可通过不断调整松弛空间的代价因子C,调整优化得的超球面半径。二、代码
原创
6609阅读
0评论
1点赞
发布博客于 4 年前

使用Matlab自带计算机视觉库的混合高斯前景检测模型

一、前言Matlab自带的computer vision toolbox主要是toolbox里的vision模块,下面使用vision工具箱自带的混合高斯模型检测前景。二、代码%GMM前景检测foregroundDetector = vision.ForegroundDetector('NumGaussians', 3, ... 'NumTrainingFrames', 20
原创
5012阅读
0评论
3点赞
发布博客于 4 年前

caffe《学习笔记一》——《caffe21天实战》课后习题6.4网上解法总结

前言       如何使用《caffe21天实战》第六章训练好的LeNet-5模型权值文件(caffe_root/examples/mnist//lenet_iter_10000.caffemodel )测试自己的手写体数据集呢,本来思路为按照这篇文章http://blog.csdn.net/sinat_30071459/article/details/50501689尝试使用ImageNet
原创
1379阅读
0评论
1点赞
发布博客于 4 年前

cuda《学习笔记三》——共享内存和同步

一、前言       本文介绍CUDA编程的共享内存和同步。共享内存中的变量(核函数中用__shared__声明),在GPU上启动的每个线程块,编译器都创建该变量的副本,若启动N个线程块,则有N个该变量副本,为每个线程块私有;同步则是使线程块中所有的线程能够在执行完某些语句后,才执行后续语句。二、线程块、线程索引以下为线程块与线程的层次结构图
原创
2785阅读
1评论
0点赞
发布博客于 4 年前

cuda《学习笔记二》——基本用法

一、前言       本文对使用cuda加速一维数组运算、二维图像处理运算的方法作总结,参考自《CUDA By Example》二、一维数组并行运算       经过查询,本人的老显卡GT550M,可得其3维线程格,每维包含线程块数量为(65536,65536,65536),相应的每维包含线程数为(1024,1024,64),故可得知线程格的每一维可开启的线程块最大数均为655
原创
2598阅读
1评论
0点赞
发布博客于 4 年前

二维图像中Mat::setp、Mat::step1理解

一、前言       Mat中的step为构成图像的层次,考虑到Mat多应用于二维图像,本文讨论二维图像step的含义和应用。二维图像数据存储示意图如下:                                                       如上图所示,该二维图像大小为5*6,图中元素I位于第2行第4列,该元素可具有多个通道,可为1、2、3、4;常见通道数为1
原创
5268阅读
0评论
4点赞
发布博客于 4 年前

Harris原理及opencv源码分析

一、前言Harri角点检测的原理分析网上已经一大堆,这里则简单介绍Harris角点检测,并结合原理分析opencv实现的源码。参考资料:http://blog.csdn.net/ZengDong_1991/article/details/45563301http://docs.opencv.org/2.4/doc/tutorials/features2d/trackingmot
原创
1813阅读
1评论
0点赞
发布博客于 4 年前

CPU与GPU版金字塔光流法在速度上的比较

一、前言经过实际测试,GPU版本的金字塔LK光流法在速度上比CPU版本快了5倍多。。。测试视频大小为640*480二、代码#include #include #include using namespace cv;#include #include #include "MyTimer.h"int main(){ const std::string fname("
原创
3192阅读
1评论
0点赞
发布博客于 5 年前

Farneback光流法检测前景的一个例子

一、前言本文使用opencv的calcOpticalFlowFarneback光流法计算图像的运动光流,并显示计算得的光流强度,视频大小为640*480,但速度很慢,计算速度为300ms左右一帧。不知使用GPU版的光流法能快多少。二、简单的代码#include #include #include #include using namespace cv;#include #
原创
4841阅读
3评论
1点赞
发布博客于 5 年前

KSVD算法原理简述

附上原论文截图:
原创
7653阅读
1评论
2点赞
发布博客于 5 年前

正交匹配追踪(OMP)与C++代码

一、前言本文参考自两篇博文http://blog.csdn.net/scucj/article/details/7467955和http://blog.csdn.net/pi9nc/article/details/26593003, OMP(正交匹配追踪)理论早在90年代就提出来了,其为将信号分解为超完备字典上的稀疏表示的经典方法之一,这两篇博客分析得很透出,原理上这里不再重复。
原创
1020阅读
0评论
0点赞
发布博客于 5 年前

C++统计代码运行时间计时器

一、前言         这里记下从网上找到的一些自己比较常用的C++计时代码二、Linux下精确至毫秒#include #include #include double get_wall_time(){ struct timeval time ; if (gettimeofday(&time,NULL)){ return 0;
原创
3852阅读
1评论
1点赞
发布博客于 5 年前

BP神经网络原理及C++代码实现

//ann_bp.h//#ifndef _ANN_BP_H_#define _ANN_BP_H_#include #include #include #include #include #include class Ann_bp{public: explicit Ann_bp(int _SampleN, int nNIL, int nNOL, const int nNH
原创
12477阅读
7评论
16点赞
发布博客于 5 年前

cuda《学习笔记一》——查询属性

一、前言       本文是对学习cuda编程过程的一些基本知识进行总结,参考自《GPU高性能编程实战》二、查询显卡支持的属性属性查询中,需要重点知道的是显卡所支持的CUDA处理器数量、计算能力、一个线程格中每一维可包含的最大线程块数量、多维线程块数组中每一维可包含的最大线程数量、一个线程块中可包含的最大线程数量等三、查询属性代码//main.cu#include #inc
原创
1723阅读
0评论
2点赞
发布博客于 5 年前

SVM拙见

本文参考自《视觉机器学习20讲》。。。
原创
1030阅读
0评论
0点赞
发布博客于 5 年前

跳帧及使用线程将获取下一帧与处理当前帧同时进行

一、前言对视频进行处理时,为了达到实时处理的效果,可以不必处理每一帧,以下为间隔几帧处理视频,并使用Linux的pthread多线程机制将获取下一帧与处理当前帧异步进行的一个例子二、代码//main.c#include #include #include #include #include static IplImage *in;static IplImage *de
原创
3054阅读
0评论
3点赞
发布博客于 5 年前

opencv上gpu版surf特征点与orb特征点提取及匹配实例

一、前言本文主要实现了使用opencv里的gpu版surf特征检测器和gpu版orb检测器,分别对图片进行特征点提取及匹配,并对寻获的特征点进行了距离筛选,将匹配较为好的特征点进行展示二、实现代码我不生产代码,我只是代码的搬运工和修改公//main.cpp//#include #include #include #include #include #include
原创
7203阅读
10评论
5点赞
发布博客于 5 年前

使用cuda加速图像缩放的例子

一、前言本文主要讲解了cuda并行加速的一个小例子,对图像缩放的最近邻插值算法做加速。二、代码实现由于进行缩放时,每个新像素点的计算方法均一致,故可使用并行计算,opencv中的resize也是这么做的。//main.cu////#include "cuda_runtime.h"#include #include #include #include #incl
原创
8857阅读
1评论
1点赞
发布博客于 5 年前

C实现的类似vector的容器

一、前言以下为C语言实现的类似C++的STL中vector的容器二、代码////////////cvector.h////////////////////////////////#ifndef VECTOR_H#define VECTOR_H#include #include /////////结点存放自己的数据结构//////////typedef struct{
原创
5124阅读
0评论
0点赞
发布博客于 5 年前

Linux下C和C混编的一个例子

一、前言       由于Linux下C和C++编程自己还不是很熟练,在这里记下C文件中调用C++函数以及C++调用C函数的一些方法,C使用gcc编译,C++使用g++编译。二、C中调用C++       同一目录中,新建main.c,Add.cpp及头文件Add.h,相应内容为://////main.c#include #include "stdlib.h"extern
原创
716阅读
0评论
1点赞
发布博客于 5 年前

vs2013和cuda7.5配置使用

一、前言由于想学习gpu并行运算提高计算效率,并且经过数次配置失败,最后终于成功了,于是决定把配置过程写下来,希望别人少走个坑,vs2013和cuda7.5配置主要参考了http://blog.csdn.net/u013422712/article/details/49498055二、电脑配置电脑配置为Windows7 + VS2013+ NVIDIA GeForce GT 550
原创
4418阅读
3评论
1点赞
发布博客于 5 年前

小波分析中的wave2gray函数以及相关函数

想要使用wave2gray函数获得小波系数,找了很久才找到,以及相关的函数wavecut、wavework、wavecopy。
rar
发布资源于 5 年前

使用Qt从excel读取数据至数据库

一、前言本文介绍了一种在Qt平台将excel表格的数据读取至数据库QSQLite的方法。思路为:先将excel表格转为csv文件,若原表格中存在着中文,还需将csv的编码格式转为UTF-8,接着由QFile打开该csv文件,将每一行的数据读出,并写入创建的数据库表格。二、将excel表格转为csv文件首先需要将保存了需要读取至数据库的excel表格保存为csv文件,如下为实例e
原创
7051阅读
10评论
5点赞
发布博客于 5 年前

基于Qt和opencv的身份证号码识别系统

本文主要实现了对身份证图片上身份证号码的自动识别,在Qt平台上使用opencv进行图像处理,并绘制简单的用户界面,设计了一个基于Qt和opencv的身份证号码识别系统。
rar
发布资源于 5 年前

基于opencv的身份证识别系统

一、前言本文主要实现了对身份证图片上身份证号码的自动识别,在Qt平台上使用opencv进行图像处理,并绘制简单的用户界面,设计了一个基于Qt和opencv的身份证号码识别系统。二、用户界面       用户界面如下所示,简单几个控件,这里只是实现了身份证号码的识别,而没有对汉字(姓名及地址)识别,水平尚且不足。三、身份证图像处理流程下图为身份证识别系统的系统框图。
原创
23871阅读
29评论
7点赞
发布博客于 5 年前

Ostu(大津法)二值化图像简介

一、前言Ostu方法又名最大类间差方法,通过统计整个图像的直方图特性来实现全局阈值T的自动选取,其算法步骤为:1)  先计算图像的直方图,即将图像所有的像素点按照0~255共256个bin,统计落在每个bin的像素点数量2)  归一化直方图,也即将每个bin中像素点数量除以总的像素点3)  i表示分类的阈值,也即一个灰度级,从0开始迭代4)  通过归一化的直方图,统计0~i 灰
原创
16618阅读
2评论
3点赞
发布博客于 5 年前

使用opencv的SVM和神经网络完成车牌识别

使用opencv的SVM和神经网络完成车牌识别!!!
rar
发布资源于 5 年前

使用opencv的SVM和神经网络实现车牌识别

参考自《深入理解Opencv 实用计算机视觉项目解析》中的自动车牌识别项目,并对其中的方法理解后,再进行实践。使用边缘检测的方法完成车牌粗定位,再使用SVM进一步得候选车牌,将车牌上字符分割下来之后,使用神经网络训练后进行预测车牌字符。
rar
发布资源于 5 年前

使用opencv的SVM和神经网络实现车牌识别

一、前言本文参考自《深入理解Opencv 实用计算机视觉项目解析》中的自动车牌识别项目,并对其中的方法理解后,再进行实践。深刻认识到实际上要完成车牌区域准确定位、车牌区域中字符的准确分割,字符准确识别这一系列步骤的困难。所以最后的识别效果也是有待进一步提高。二、程序流程程序流程如下所示:相应的main函数ruxia #include "carID_Detection.h
原创
13393阅读
6评论
2点赞
发布博客于 5 年前

使用opencv的SVM实现车牌区域识别

一、前言本文仅仅演示使用opencv2.4.6中已经定义好的SVM函数实现对车牌区域正负样本的训练,然后使用训练好的SVM模型对测试样本进行预测。二、所使用的正负样本首先我将一系列图片进行图像预处理、分割等一系列步骤,这部分内容可以参看《深入理解opencv 使用计算机视觉项目解析》,这样从中挑选出100个正样本(车牌区域)和70个负样本(非车牌区域),大小均为144*33,分
原创
8426阅读
4评论
1点赞
发布博客于 5 年前

在Qt中使用opencv对视频卡通化处理

文主要在Qt中使用opencv进行编程,实现了简易的摄像头播放及其卡通化处理功能,只要稍作更改,也可打开其他视频,并对视频进行其他处理,编程环境为Qt5.5.1+opencv2.4.6
rar
发布资源于 5 年前

使用opencv在Qt中实现卡通化视频处理

一、前言本文主要在Qt中使用opencv进行编程,实现了简易的摄像头播放及其卡通化处理功能,编程环境为Qt5.5.1+opencv2.4.6,实现的关键是将Mat变量转换为QImage变量,并使用QLabel进行显示。二、环境配置首先需要安装Qt creator 5.5.1和下载解压opencv2.4.6,为了能够在Qt中调用opencv中的函数,必须用cmake对openc2.4
原创
2780阅读
1评论
1点赞
发布博客于 5 年前

opencv中CalcOpticalFlowPyrLK实现的光流法理解

更多细节请查看论文“PyramidalImplementation of the Lucas Kanade Feature Tracker Description of the algorithm”
原创
16475阅读
4评论
11点赞
发布博客于 5 年前

C++学习笔记(七)输入不定长度二维数组

被一个看似简单的问题困扰一个晚上,对于C++中数组的使用,这里要讨论的是如何利用cin及相关函数从荧屏上将从键盘输入的整数储存到数组中,对于长度已知的数组,可以很容易地开辟数组,而对于长度未知的数组,则一方面可以采用动态分配长度的数组空间实现,另一方面可以采用STL模板库中的vector容器。下面介绍后一种方法:    例如要开辟以下空间则可以使用vector> ,代码
原创
8093阅读
1评论
1点赞
发布博客于 5 年前

八皇后问题(python版理解)

一、 前言八皇后问题是一个经典的数学问题,同时也是一个典型的回溯问题,《Python基础教程》简单的思路是:首先尝试在第1行放置第1个皇后,然后在第2行某个位置放置皇后,依次进行,当发现某行的所有位置都不能防止皇后时,回溯至上一行,试着将上一行皇后放置在其他位置,再考虑下一行皇后的位置。二、规则描述      首先由元组表示皇后的位置,如state[0] = 2,则表示第1行的
原创
3696阅读
0评论
0点赞
发布博客于 5 年前

Python编程获得本机所有网络链接的ip地址

一、前言     本文使用Python编程获得本机所有网络链接的ip地址,主要思路为:通过os模块调用cmd命令ipconfig,将返回的结果保存,然后使用re模块的正则表达式从结果中获得所有网络链接的ip地址,保存至字典中,最后打印。要求每个ip地址必须具有相应的网络链接名说明,则从字符串‘IPv4地址’所在行的前几行中开始查找字符串‘适配器’的所在行文本二、cmd命令ipconfi
原创
4786阅读
1评论
3点赞
发布博客于 5 年前

基于MFCC和DTW的说话人识别系统

说话人识别,也称之为声纹识别,是利用语音中所含有的反映特定说话人生理特征的语音特征参数来自动识别说话人身份的技术。本文介绍一种称为Mel频率倒谱系数(MFCC)的声音特征,该声音特征分析着眼于人耳的听觉特性,可以获得较高的识别率,本文根据Mel频率倒谱系数完成一个基于MFCC的简单说话人识别系统。
原创
3785阅读
1评论
2点赞
发布博客于 5 年前

基于DWT和MFCC的说话人识别系统

该说话人识别系统通过提取语音信号的MFCC特征参数,并由DWT算法计算得测试样本与各模板样本之间的距离,由最近临准则,完成说话人识别。优点是算法简单,无需大量样本,缺点为需保证说话人说话的内容一致。
rar
发布资源于 5 年前

数字信号处理之经典谱估计与现代谱估计

%1、直接法:clc;clear all;u = wgn(1,2000,0); %产生高斯白噪声信号样本点2000个b = [1 1 0.24];a = [1 -1.5 0.56]; %滤波器系数xn = filter(b,a,u) % u通过滤波器的输出xnN = 1000;xn = xn(1,1:N); %取x的1000个样本点分析nfft=1024; %取1024点fft运
原创
8755阅读
1评论
9点赞
发布博客于 5 年前

python基础教程第二版PDF及代码

学习python的经典资料,本书为面向Python初学者,不仅介绍语法,最后还有实战项目可练习,《Python基础教程(第2版)》的PDF资料以及这本书中各章节的代码均包含在内
rar
发布资源于 5 年前

Matlab学习笔记(一)Matlab基本运算及语法

一、概述Matlab(MATrix LABoratory),也即矩阵实验室,因而数据在其中都是以矩阵为基本数据单位保存的,就算一个数字,也是1*1的矩阵。本篇总结Matlab的一些基本的语法和函数用法,刚接触Matlab的可以看看。二、矩阵的产生及基本运算(1)假如现在要创建3*3矩阵,如>> A = [1 2 3;4 5 6;7 8 9]A = 1 2
原创
1164阅读
0评论
1点赞
发布博客于 6 年前

C++学习笔记(六)文件处理

一、概述本文主要讲解如何使用C++程序来创建、更新和处理数据文件,主要考虑顺序存储和随机存储文件两种方式。二、文件和流C++将每个文件看成是字节序列,每个文件都以一个文件结束符或者是存储在系统维护、管理的数据结构中的一个特点字节数作为结尾,而C++使用流对象(一种特殊的类模板的对象,也即流类模板对象)提供程序和文件之间的通信,如标准输入流对象cin,标准输出流对象cout等。为了在
原创
686阅读
0评论
0点赞
发布博客于 6 年前

C++学习笔记(五)标准模板库STL

一、概述STL,即是标准模板库(Standard Template Library)。定义了强大的,基于模板的类库,实现了许多通用的数据结构及处理这些结构的算法。本文对STL的三个关键内容——容器(container)、迭代器(iterator)和算法(algorithm)进行介绍。下面对这三部分进行简单介绍,因为3者的联系密切(1)STL容器容器,是一种可以用来存放多个数据且长度动态
原创
995阅读
0评论
0点赞
发布博客于 6 年前

C++学习笔记(四)指针实现的链表、堆栈、队列、二叉查找树

一、概述本文将介绍在程序执行期间动态消长的动态数据结构,包括链表(linked list)、栈(stack)、队列(queue)、二叉树(binary tree)。这些动态数据结构与定长数据结构(数组)的区别在于前者的长度是动态分配的,而后者为固定长度。二、链表链表是多个数据节点(node)的线性集合,这些节点通过指针链(link)链接起来,是一种线性数据结构。在链表的任何一项数据项上
原创
1238阅读
0评论
0点赞
发布博客于 6 年前

c++学习笔记(三)多态性

一、概述本文介绍了C++编程中的多态性的概念及用法,多态性即是同样的消息发给不同派生类对象会产生多种形式的结果。二、使用Virtual函数和动态绑定实现多态性通过基类的指针或引用(指针句柄或引用句柄)调用一个virtual函数时,C++动态地(在运行时)根据对象初始化的类选择正确的函数来执行。代码如下://CommissionEmployee.h#ifndef COMMISS
原创
536阅读
0评论
0点赞
发布博客于 6 年前

C++学习笔记(二)C风格字符串和string类区别和联系

一、概述有时候在使用字符串时,总把C++的字符串类型和C风格的字符串混淆,或者独立为不同概念,为此特定查找资料,总结两者之间的区别和联系。如有错误,恳请指出。二、C语言中的字符串在C语言中,对字符串的处理主要是使用字符数组(以空字符’\0’为结尾)或者是指向字符类型的指针,即用char*,但指针在实现字符串类型是较为麻烦的。用法如下://example 1char str[15]
原创
1180阅读
0评论
1点赞
发布博客于 6 年前

C++学习笔记(一)函数模板与类模板

一、概述函数通常用于执行相似的操作,这些操作处理不同数据类型上的不同程序逻辑,假如函数要处理的数据类型不同,但程序逻辑一样,那么使用函数模板可以简便地对函数进行重载。二、代码如下#include using namespace std;template //class T 即T可表示为不同数据类型T maximum( T value1 ,T value2 ,T value3
原创
588阅读
0评论
0点赞
发布博客于 6 年前

基于mean-shift的简单目标跟踪

一、概述作为即将踏入图像识别、目标跟踪领域的一名研究生,先从基础的学起,本文采用了经典的mean-shift算法,思路简单,实现的思路来源于一个网址:http://zhidao.baidu.com/link?url=v2PlqAHX45kjCWJUnSsZYBwHkPVCX8vp6oIZnRXV7IKG0phmuy0vwQ02_SRBgK1OLieVctpFJHR1cGoaxlDAIK,得到的
原创
3152阅读
1评论
2点赞
发布博客于 6 年前