OCP-1Z0-051 第110题 AVG的使用

本文介绍了一道关于SQL查询的题目,需要从CUSTOMERS表中筛选出居住在WASHINGTON和NEWYORK两个城市的客户,并计算这两个城市的平均信用额度。通过对比四个选项,解析了正确答案并解释了原因。
一、原题
View the Exhibit and examine the structure of the CUSTOMERS table.

Using the CUSTOMERS table, you need to generate a report that shows the average credit limit for customers in WASHINGTON and NEW YORK.
Which SQL statement would produce the required result?
A. SELECT cust_city, AVG(cust_credit_limit)
        FROM customers
      WHERE cust_city IN ('WASHINGTON','NEW YORK')
GROUP BY cust_credit_limit, cust_city;

B. SELECT cust_city, AVG(cust_credit_limit)
        FROM customers
     WHERE cust_city IN ('WASHINGTON','NEW YORK')
GROUP BY cust_city,cust_credit_limit;

C. SELECT cust_city, AVG(cust_credit_limit)
        FROM customers
     WHERE cust_city IN ('WASHINGTON','NEW YORK')
GROUP BY cust_city;

D. SELECT cust_city, AVG(NVL(cust_credit_limit,0))
        FROM customers
     WHERE cust_city IN ('WASHINGTON','NEW YORK');

答案:C

二、题目翻译
查看CUSTOMERS表的结构
使用CUSTOMERS表的数据生成一个报表,显示居住在WASHINGTON和NEW YORK的客户的平均credit limit
哪条SQL语句给出所需结果?

三、题目解析
AB选项不正确,因为GROUP BY里的分组的列不对,这里应该按cust_city分组。
D选项不正确,因为要根据城市求平均值,所以需要使用GROUP BY子句分组。

内容概要:本文围绕“考虑储能和可再生能源误差的售电公司购售电策略”展开,基于Python代码实现,构建了日前调度和日内调度两个时间尺度下的优化模型,旨在帮助售电公司在存在可再生能源出力不确定性及储能系考虑储能和可再生能源误差的售电公司购售电策略(Python代码实现)统参与的情况下,制定最优购售电决策。研究综合考虑了电价波动、负荷需求、储能充放电特性以及风光发电预测误差等因素,通过数学建模与优化算法求解,降低运营风险并提升经济效益。文中强调该策略为顶级SCI复现工作,具有较强的学术参考价值和技术实用性,并配套提供完整的代码资源供学习与验证。; 适合人群:具备一定电力系统基础知识和Python编程能力的研究生、科研人员及从事能源交易、智能电网优化等相关领域的工程技术人员。; 使用场景及目标:① 掌握含不确定性因素的电力市场购售电优化建模方法;② 学习多时间尺度调度框架的设计与实现;③ 复现高水平SCI论文中的优化策略,提升科研能力与项目实践水平。; 阅读建议:建议读者结合提供的Python代码逐模块分析,重点关注目标函数构建、约束条件设置及求解器调用过程,同时可借助文中提及的YALMIP等工具包深入理解优化模型的实现细节,推荐在实际数据基础上进行调试与扩展实验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值